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motivation

“Kolmogorov is not computable, it’s only of 
theoretical use”

No, approximations are usually correct



preliminaries: Probabilities & codes

 ӫ L(x): (prefix) code length function
 ӫ p(x): probability (semi) measure

-log p(x) = L(x)

  



step 1: computable probabilities

From TMs to probabilities: 
    T(p) = x
    pT(x) = Σp:T(p) = x 2

-|p|
 

    m(x) = pU(x)

equivalent to the lower semicomputable 
semimeasures



step 2: model classes

A model class C is an effectively enumerable 
subset of all Turing machines.

UC(ıp) = Ti(p)

KC(x) = minp { p : UC(p) = x }
mC(x) = Σp:UC(p) = x 2

-|p|
 



step 3: safe approximation

 ӫ L(x): approximating  
  code-length function

 ӫ L(x) is safe against p when 

p(L(x) - K(x) ≥ k) ≤ cb-k

for some c and b > 1



Is KC safe against p∈C?



no.



x x x x x x x x

not x



x x x x x x x x

not x

-log mC(x)

KC(x)



Is -log mC safe against p∈C?



yes.
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can we compute mC?

 ӫ We can if it’s upper and lower  
semicomputable

 ӫ lower: dovetail all programs for UC

 ӫ upper: dovetail until 
(1-s)/sx ≤ 2c − 1

 ӫ If C is complete, this algorithm is com-
putable



KC(x)

κC(x) =
 -log mC(x)

κC(x) =
 -log mC(x) -log m(x)

K(x)

computable approximable

dominates

unsafe

bounds

2-safe

dominates

bounds

bounds

incomputable

dominates

dominates

Fig. 1: An overview of how various code-length functions relate to each other in terms
of approximation safety (as proved in the main text). These relations hold under the
assumption that the data is generated by a distribution in C and that C is sufficient.

The following lemma shows that safe approximation is transitive, so that if we
have a chain of functions, with each safe for the next, the first is safe for the last.

Lemma 5 The property of safety is transitive and reflexive over the space of
functions from B to B for a fixed adversary.

Proof. Reflexivity holds trivially. Transitivity: Let p(f(x) − g(x) ≥ k) ≤
c1b1

−k and p(g(x)−h(x) ≥ k) ≤ c2b2
−k. We need to show that p(f(x)−h(x) ≥ k)

decays exponentially with k. We start with

p (f(x)− g(x) ≥ k ∨ g(x)− h(x) ≥ k) ≤ c1b1
−k + c2b2

−k . (1)

Since {x : f(x)− h(x) ≥ 2k} ⊆ {x : f(x)− g(x) ≥ k ∨ g(x)− h(x) ≥ k}, the prob-
ability of the first set is less than that of the second: p (f(x)− h(x) ≥ 2k) ≤
c1b1

−k + c2b2
−k . Which gives us

p (f(x)− h(x) ≥ 2k) ≤ cb−k with b = min(b1, b2) and c = max(c1, c2) ,

p (f(x)− h(x) ≥ k′) ≤ cb′−k′
with b′ =

√
b . ��

4 A safe, computable approximation of K

Assuming that our data is produced from a model in C, can we construct a
computable function which is safe for K? An obvious first choice is KC . For it
to be computable, we would normally ensure that all programs for all models
halt. Since the halting programs form a prefix-free set, this is impossible. The
following definition ensures that if we enumerate all possible programs on a
sufficient model T , we either see the machine sampling a bit beyond the length
of the program, or we see it halt.



What does this buy us?

 ӫ bridge between the practical and the 
platonic

 ӫ Bayesian ↔ MDL ↔ Algorithmic
 ӫ corollary: Kt

 ӫ Additional results: ID, NID



Questions?


