
A safe & computable approximation
to Kolmogorov complexity

Peter Bloem, Francisco Mota, Steven de Rooij,
Luìs Antunes & Pieter Adriaans

preliminaries: Kolmogorov complexity

U(ıp) = Ti(p)
K(x) = minp { p : U(p) = x }

preliminaries: Kolmogorov complexity

U(ıp) = Ti(p)
K(x) = minp { p : U(p) = x }

 ӫ U is a formalisation of the notion of a
description

 ӫ K is invariant to the choice of U
 (up to a constant)

preliminaries: Kolmogorov complexity

U(ıp) = Ti(p)
K(x) = minp { p : U(p) = x }

 ӫ U is a formalisation of the notion of a
description

 ӫ K is invariant to the choice of U
 (up to a constant)

preliminaries: Kolmogorov complexity

U(ıp) = Ti(p)
K(x) = minp { p : U(p) = x }

 ӫ U is a formalisation of the notion of a
description

 ӫ K is invariant to the choice of U
 (up to a constant)

motivation

“Kolmogorov is not computable, it’s only of
theoretical use”

No, approximations are usually correct

preliminaries: Probabilities & codes

 ӫ L(x): (prefix) code length function
 ӫ p(x): probability (semi) measure

-log p(x) = L(x)

step 1: computable probabilities

From TMs to probabilities:
 T(p) = x
 pT(x) = Σp:T(p) = x 2

-|p|

 m(x) = pU(x)

equivalent to the lower semicomputable
semimeasures

step 2: model classes

A model class C is an effectively enumerable
subset of all Turing machines.

UC(ıp) = Ti(p)

KC(x) = minp { p : UC(p) = x }
mC(x) = Σp:UC(p) = x 2

-|p|

step 3: safe approximation

 ӫ L(x): approximating
 code-length function

 ӫ L(x) is safe against p when

p(L(x) - K(x) ≥ k) ≤ cb-k

for some c and b > 1

Is KC safe against p∈C?

no.

x x x x x x x x

not x

x x x x x x x x

not x

-log mC(x)

KC(x)

Is -log mC safe against p∈C?

yes.

-log mC is safe against mC

mC
(
− logmC(x) − K(x) � k

)

= mC
(
mC(x) � 2−k2−K(x)

)

=
∑

x:mC(x)�2−k2−K(x)
mC(x)

�
∑

2−k2−K(x)

= 2−k
∑

2−K(x) � 2−k

mC(·) =
∑
q∈C

cqpq(·) � cqpq(·)

cqpq

(
− logmC(x) − K(x) � k

)

� mC
(
− logmC(x) − K(x) � k

)

� 2−k

1

-log mC is safe against mC

mC
(
− logmC(x) − K(x) � k

)

= mC
(
mC(x) � 2−k2−K(x)

)

=
∑

x:mC(x)�2−k2−K(x)
mC(x)

�
∑

2−k2−K(x)

= 2−k
∑

2−K(x) � 2−k

mC(·) =
∑
q∈C

cqpq(·) � cqpq(·)

cqpq

(
− logmC(x) − K(x) � k

)

� mC
(
− logmC(x) − K(x) � k

)

� 2−k

1

-log mC is safe against mC

mC
(
− logmC(x) − K(x) � k

)

= mC
(
mC(x) � 2−k2−K(x)

)

=
∑

x:mC(x)�2−k2−K(x)
mC(x)

�
∑

2−k2−K(x)

= 2−k
∑

2−K(x) � 2−k

mC(·) =
∑
q∈C

cqpq(·) � cqpq(·)

cqpq

(
− logmC(x) − K(x) � k

)

� mC
(
− logmC(x) − K(x) � k

)

� 2−k

1

-log mC is safe against mC

mC
(
− logmC(x) − K(x) � k

)

= mC
(
mC(x) � 2−k2−K(x)

)

=
∑

x:mC(x)�2−k2−K(x)
mC(x)

�
∑

2−k2−K(x)

= 2−k
∑

2−K(x) � 2−k

mC(·) =
∑
q∈C

cqpq(·) � cqpq(·)

cqpq

(
− logmC(x) − K(x) � k

)

� mC
(
− logmC(x) − K(x) � k

)

� 2−k

1

-log mC is safe against mC

mC
(
− logmC(x) − K(x) � k

)

= mC
(
mC(x) � 2−k2−K(x)

)

=
∑

x:mC(x)�2−k2−K(x)
mC(x)

�
∑

2−k2−K(x)

= 2−k
∑

2−K(x) � 2−k

mC(·) =
∑
q∈C

cqpq(·) � cqpq(·)

cqpq

(
− logmC(x) − K(x) � k

)

� mC
(
− logmC(x) − K(x) � k

)

� 2−k

1

-log mC is safe against mC

mC
(
− logmC(x) − K(x) � k

)

= mC
(
mC(x) � 2−k2−K(x)

)

=
∑

x:mC(x)�2−k2−K(x)
mC(x)

�
∑

2−k2−K(x)

= 2−k
∑

2−K(x) � 2−k

mC(·) =
∑
q∈C

cqpq(·) � cqpq(·)

cqpq

(
− logmC(x) − K(x) � k

)

� mC
(
− logmC(x) − K(x) � k

)

� 2−k

1

-log mC is safe against members of C

mC
(
− logmC(x) − K(x) � k

)

= mC
(
mC(x) � 2−k2−K(x)

)

=
∑

x:mC(x)�2−k2−K(x)
mC(x)

�
∑

2−k2−K(x)

= 2−k
∑

2−K(x) � 2−k

mC(·) =
∑
q∈C

cqpq(·) � cqpq(·)

cqpq

(
− logmC(x) − K(x) � k

)

� mC
(
− logmC(x) − K(x) � k

)

� 2−k

1

-log mC is safe against members of C

mC
(
− logmC(x) − K(x) � k

)

= mC
(
mC(x) � 2−k2−K(x)

)

=
∑

x:mC(x)�2−k2−K(x)
mC(x)

�
∑

2−k2−K(x)

= 2−k
∑

2−K(x) � 2−k

mC(·) =
∑
q∈C

cqpq(·) � cqpq(·)

cqpq

(
− logmC(x) − K(x) � k

)

� mC
(
− logmC(x) − K(x) � k

)

� 2−k

1

-log mC is safe against members of C

mC
(
− logmC(x) − K(x) � k

)

= mC
(
mC(x) � 2−k2−K(x)

)

=
∑

x:mC(x)�2−k2−K(x)
mC(x)

�
∑

2−k2−K(x)

= 2−k
∑

2−K(x) � 2−k

mC(·) =
∑
q∈C

cqpq(·) � cqpq(·)

cqpq

(
− logmC(x) − K(x) � k

)

� mC
(
− logmC(x) − K(x) � k

)

� 2−k

1

-log mC is safe against members of C

mC
(
− logmC(x) − K(x) � k

)

= mC
(
mC(x) � 2−k2−K(x)

)

=
∑

x:mC(x)�2−k2−K(x)
mC(x)

�
∑

2−k2−K(x)

= 2−k
∑

2−K(x) � 2−k

mC(·) =
∑
q∈C

cqpq(·) � cqpq(·)

cqpq

(
− logmC(x) − K(x) � k

)

� mC
(
− logmC(x) − K(x) � k

)

� 2−k

1

can we compute mC?

 ӫ We can if it’s upper and lower
semicomputable

 ӫ lower: dovetail all programs for UC

 ӫ upper: dovetail until
(1-s)/sx ≤ 2c − 1

 ӫ If C is complete, this algorithm is com-
putable

KC(x)

κC(x) =
 -log mC(x)

κC(x) =
 -log mC(x) -log m(x)

K(x)

computable approximable

dominates

unsafe

bounds

2-safe

dominates

bounds

bounds

incomputable

dominates

dominates

Fig. 1: An overview of how various code-length functions relate to each other in terms
of approximation safety (as proved in the main text). These relations hold under the
assumption that the data is generated by a distribution in C and that C is sufficient.

The following lemma shows that safe approximation is transitive, so that if we
have a chain of functions, with each safe for the next, the first is safe for the last.

Lemma 5 The property of safety is transitive and reflexive over the space of
functions from B to B for a fixed adversary.

Proof. Reflexivity holds trivially. Transitivity: Let p(f(x) − g(x) ≥ k) ≤
c1b1

−k and p(g(x)−h(x) ≥ k) ≤ c2b2
−k. We need to show that p(f(x)−h(x) ≥ k)

decays exponentially with k. We start with

p (f(x)− g(x) ≥ k ∨ g(x)− h(x) ≥ k) ≤ c1b1
−k + c2b2

−k . (1)

Since {x : f(x)− h(x) ≥ 2k} ⊆ {x : f(x)− g(x) ≥ k ∨ g(x)− h(x) ≥ k}, the prob-
ability of the first set is less than that of the second: p (f(x)− h(x) ≥ 2k) ≤
c1b1

−k + c2b2
−k . Which gives us

p (f(x)− h(x) ≥ 2k) ≤ cb−k with b = min(b1, b2) and c = max(c1, c2) ,

p (f(x)− h(x) ≥ k′) ≤ cb′−k′
with b′ =

√
b . ��

4 A safe, computable approximation of K

Assuming that our data is produced from a model in C, can we construct a
computable function which is safe for K? An obvious first choice is KC . For it
to be computable, we would normally ensure that all programs for all models
halt. Since the halting programs form a prefix-free set, this is impossible. The
following definition ensures that if we enumerate all possible programs on a
sufficient model T , we either see the machine sampling a bit beyond the length
of the program, or we see it halt.

What does this buy us?

 ӫ bridge between the practical and the
platonic

 ӫ Bayesian ↔ MDL ↔ Algorithmic
 ӫ corollary: Kt

 ӫ Additional results: ID, NID

Questions?

