
design thinking.

Design thinking is a common name for a set of
practices and philosophies that are common in
industries dedicated to design: web design,
graphic design, product design and so on. It's
difficult to build such products in such a way that
everybody can be involved, especially non-
experts, and so a set of best practices has
emerged for structuring such processes.

Why should we care about design thinking? CS is
a creative enterprise. Not in the sense that we get
in touch with our feelings and try to express them
in our work, but in the simple, literal sense that
we create things. When we start something isn't
there and when we finish, something is. Even if
the core business is science, which is not creative
in the sense that you uncover a truth rather than
make it, the results of that science still have to be
packaged in some way. We spend a lot of our
time writing papers, planning conferences and
workshops, design course and so on. All of which
require creative work.

ideation prototyping finishing

Here is the simplest outline of a creative process.
You can make it more detailed, but three stages
will suffice for us. In ideation you come up with
ideas, in prototyping you start making crude test
version of the final product, like a painter
sketching their composition, and in finishing, you
build the final design, in all its detail.

The main thing to say about this process, is that it
can't be linear, left-to-right. You can not hope to
get your ideas right in one go, and then make a
perfect prototype. In fact the whole point of the
prototyping stage is to uncover mistakes in your
ideas before you move on to make the far more
costly final product.

To do this effectively, you need to do two things.
First, you need to iterate each stage. You need to

force yourself to evaluate what you've come up
with so far and allow yourself to fix anything that
doesn't seem right. This is difficult, since we are
lazy creatures by default, so it helps to have tools
that force you to look at your ideas and design in
a new light.

Second, you have to allow yourself to go back.
This makes people nervous, because it feels like
you're moving in the wrong direction. But in order
to develop a good product you have to find its
problems and allow yourself to go back to the
drawing board.

Where to to start? What is the first question you
ask?

Who is the user?

What do they want?

User stories

As a website visitor, I want to know the submission date,
so that I can plan my paper.

This is an example of a user story. The default
format is "As a <blank> I want to <blank> so that
<blank>.

You can deviate from this format, but ...

The rules:

❧ User stories are short: 1-3 sentences.

❧ They identify a type of user and a goal. Optionally, a context.

❧ They do not imply anything about how the problem is solved.

User stories

These are the main rules.

The last one is particularly important. The whole
point of user stories is to discuss the problem
without committing yourself to any particular
solution.

product manager

interaction designer

programmer

Consider the following example: a design team is
creating a document editor. The client demands
that before closing the editor, a dialog appears,
asking the user to save her documents. The
designer disagrees: confirmation dialogs are bad
practice. The designer suggests saving
automatically. The client isn’t sure: she may not
want to save her changes, she may want to
discard them. The programmer notes that the
confirmation dialog is the easiest option, and the
manager chooses the confirmation dialog. It is
only a small problem after all.

As a user, I don't want to lose unsaved work.

As a user, I don't want to lose unsaved work
when I close the application.

As a user, I don't want to lose unsaved work
when my computer crashes.

When we ask people to write user stories, we can
investigate the problem without committing
ourselves to a solution that affects the rest of the
application.

Here, the more user stories we write, the more it
turns out that versioning system doesn't just
satisfy this one user story, it satisfies many other.
The more user stories you collect, the more you
make the case for the versioning system.

As a user, I want to go back to previous
versions of my document.

As a user in a team, I want to collaborate
on a document with teammates.

As a user in a team I want to track what
changes others make to a document.

As a user, I want to access a document from
different devices.

In fact, you may find that you've made some
incorrect implicit assumptions about your
product. Here, we see that a desktop application
may not be the way to go at all. A web application
(with a versioning system) hits a lot more of these
user stories.

By arguing over solutions, you end up committing
yourself more and more to arbitrary choices. By
developing user stories, you can investigate the
design space without committing yourself.

Exercise. Write some user stories.

product manager

interaction designer

security
manager

To make user stories even more applicable, we
can move from users to general stakeholders. A
stakeholder is anybody who wants something
from from the product. For a webshop, both the
buyer and the seller are stakeholders. So is the
supplier, the government regulator and so on.

As an example, imagine a team designing a
banking app. The security manager and the
interaction designer get into a fight over the login
procedure. The security manager wants an
airtight, two-factor login procedure. The
interaction designer worries that this will make
the app unusable.

As a user, I want to log in without too much
hassle.

As a security manager, I don't want logins
to be unsecure.

As a security manager, I don't want sensitive
operations like transferring money to be
insecure.

User stories show us that in design meetings two
people can be right at the same time, even
though their position conflict. The solution is not
to compromise or pick one winner, but to find a
solution that satisfies both user stories.

For instance, an app where you can check your
balance without logging in (or on your home
screen, without even opening the app), but where
more sensitive actions, like transferring money
require authentication.

This is a little like dialectics: there is a thesis and
an antithesis, to apparently opposing ideas. The
solution is to find a synthesis: a new idea that
unifies the two.

❧ Allow discussion without committing to solutions.

❧ Allow you to find the synthesis between conflicting ideas.

❧ Force you into the user's shoes (or other stakeholder's).

User stories: recap

So, once we have our user stories, how do we
develop them? There are a few tactics.

The first is simply structured discussion. Sit
together with a bunch of people, and discuss the
product. In such cases, it helps to have a
facilitator. Somebody who doesn't have a
position in the discussion, and whose only job is
to provide structure. They'll do things like keep
you on topic, stop the discussion from becoming
too heated, and ask people to frame their position
as a user story.

Another technique is competitor research. See
what other people in similar fields are doing. Find
out what's good about it and what isn't.

This can become especially powerful if you
combine it with user testing. This does not need
to be scientific. All you need to do is to find two
or three people, give them a task and have them
talk out loud while they use the competitors
product. This will often generate a large number
of ideas for the next iteration.

Should we have a blog on the website?

Exercise question.

Prototyping

mockup wireframe

Here are two ways to design a website without
actually building it. The first is a mockup, usually
made in a program like Photoshop, Sketch or
Figma. Its aim is to be a pixel perfect
representation of what the website should look
like. They look nice but they're expensive to
produce. What's more, if you show somebody a
mockup and ask for feedback, you will get
comments on everything from the colors to the
fonts to the splash photo. What you will never get
feedback on, are the basic concepts of the site:
the menu structure, which fields the form has,
whether the copy text is long enough.

Put simply, a mockup is a terrible way to find out
if your design is right. People don't focus on the
right things, and even if you do find a basic
mistake, you spent a lot of time on the mockup,
so you'll be disinclined to redo all that work to fix
your mistake. People may not even be confident
enough to comment on your design. After all,
you're the designer, you know about this stuff.
And even if they spot a mistake, they may not
want to cause you to have to redo all that work.

This is why we start with wireframes instead.
These are simple, hand-drawn diagrams that
communicate the basic layout and structure of
the website, without any styling. This forces
people to focus on the larger ideas, not the
details. There's also no fear to tear the idea down,
because wireframes are easy to draw. Finally,
they level the playing field. Everybody can grab a
pencil and draw a wireframe of their own. This
makes it a far more equal communication tool.

Pencil is a decent free tool for developing wire
frames.

Prototyping helps you with these two arrows.
While developing your prototypes you will
immediately start to see the problems with your
design. This allow you to go back to the user
stories, and to work them out in greater detail.

You can then iterate your prototype, making it
more detailed and uncovering more potential
problems.

Here, again, user testing can be an immensely
powerful tool. You take your paper prototype, and
let a user "use it" give them some task, and ask
them what they would do (which button they
would click, for instance). The more detailed your
prototype, the more extensively you can test.

The rules:

❧ They are simple and discardable. This promotes quick iteration.

❧ They can be hand-drawn. If not, they should look hand-drawn. This levels

the playing field.

❧ They should slowly evolve to be as specific as possible. This allows you to

troubleshoot your design.

Wire frames

Finishing

“Remember: when people tell you something's wrong or doesn't
work for them, they are almost always right.

When they tell you exactly what they think is wrong and how to
fix it, they are almost always wrong.”

—Neil Gaiman

Intelligent discussions about design are hard. This
quote by Neil Gaiman gives you most of the
problem, and the solution in one package. If you
are talking with a designer, you don't know what
they've tired, their process or their philosophies.
You can't tell them what they should do.

You can, however, tell them if something (a story,
a website, a piece of music) doesn't work for you.
That's helpful. But you have to leave it up to them
to figure out how to fix it. Stick to those rules, and
you have a healthy basis for talking to a designer.

Other media

Logos

Software

Articles

Conferences

Course design

Grant writing

Book writing

Hiring people

Running meetings

Videos Talks and lectures Other?

We don't have time to go into the details, but
these principles can be transferred to many other
things we make as academics. Ask me about the
specifics if you're curious.

ideation prototyping finishing

The most important ideas, on a high level:

Ideation. Explore ideas without committing to
solutions. Who is the user and what do they want
to do?

Prototyping. Find the problems with your design
without investing too much effort. Make quick,
cheap-looking mockups (like wireframes), and
use them to test your design. Force yourself to
go back.

Finishing. Put this off until you've given yourself a
chance to debug your design. In discussions,
respect the designer: focus what what doesn't
seem to work, not how to fix it.

