
Large-scale NETWORK MOTIF ANALYSIS
using compression

Peter Bloem, Steven de Rooij

vu@peterbloem.nl

The title of our paper is “Large-scale
network motif analysis using
compression”. My name is Peter Bloem,
and my co-author is Steven de Rooij.

source: Towards a proteome-scale map of the human protein–protein interaction network, Rual et al. 2005

© 2005 Nature Publishing Group

the yeast two-hybrid methodology. Estimating biological false posi-
tive interactions, which are genuinely observed in one or more assay
but do not occur in vivo, is more difficult. We partially addressed this
by examining the correlation of CCSB-HI1 data with other biological
information (see below).
To measure the sensitivity of CCSB-HI1, we selected two high-

confidence subsets from among all 4,067 LCI direct binary inter-
actions. LCI-core contains 624 interactions supported by at least two
PubMed entries. LCI-hypercore contains 275 interactions supported
by at least two PubMed entries and present in at least two curated
databases (Supplementary Table S2).Overall, the fractions of LCI, LCI-
core and LCI-hypercore interactions found in CCSB-HI1 are 2.3%,
4.6% and 8.4%, respectively (Fig. 2a). These overlaps are larger than
expected by chance (P , 6 £ 10256) and are similar to those found
for interactome maps in Caenorhabditis elegans and Drosophila
melanogaster7,21. That the fraction of CCSB-HI1 interactions increases
markedly with increasingly confident subsets of LCI suggests that
literature-derived interactions are variable in quality and should not
necessarily be interpreted as a ‘gold standard’. Because Space-I rep-
resents ,10% of the human network (without accounting for
alternative splice variants), and because we detected ,10% of LCI-
hypercore interactions, we conclude that the CCSB-HI1 data set
contains ,1% of the human interactome (Supplementary Data X).

We represented the union of all CCSB-HI1 and LCI interactions in
a network graph in which nodes are proteins and edges are inter-
actions. The main component of this network contains 2,784 nodes
and 6,438 edges (Fig. 2b), and shows interactions largely segregated
into two neighbourhoods: one enriched for CCSB-HI1 interactions
(red edges) and the other enriched for LCI interactions (blue edges).
To explore this hypothesis, we calculated, for each node, the fraction
of yeast two-hybrid edges within paths of length 1, 2 and 3 (that is,
within ‘1-hop’, ‘2-hop’ and ‘3-hop’ neighbourhoods). The distri-
bution of this fraction (Fig. 2c; see also Supplementary Fig. S2)
confirms the evidence-type segregation apparent in Fig. 2b. One
explanation for this phenomenon is that different biases exist in the
CCSB-HI1 and LCI data sets. For example, certain protein classes
(such as those involved in cancer) are studied more extensively
than others, resulting in an inherent inspection bias in LC data
(Supplementary Table S4). Furthermore, the methodologies used to
detect interactions (including yeast two-hybrid) each have different
biases for example, under-representation of membrane proteins
(Supplementary Data X).
The novelty of CCSB-HI1 interactions was evaluated by system-

atically searching the PubMed and Google Scholar literature data-
bases for co-occurrence of the corresponding gene symbols. More
than 85% of the CCSB-HI1 pairs (as compared with only 25% of

Figure 2 | Overlap of CCSB-HI1 with existing literature-curated (LC)
data. a, Overlap between CCSB-HI1 and LC interactions in Space-I (LCI).
The top, middle and bottom panels represent the overlap between
CCSB-HI1 and LCI, LCI-core and LCI-hypercore, respectively. b, Network
graph of the union of all CCSB-HI1 and LCI interactions. Proteins are shown
as yellow nodes and CCSB-HI1 and LCI interactions are shown as red and
blue edges, respectively. Blue edges with increasing thickness indicate
LCI-non-core, LCI-core and LCI-hypercore, respectively. The apparent
banding pattern of the yellow nodes is an artefact of the graph layout
algorithm (Supplementary Data). Importantly, the layout algorithmwas not
informed by type of supporting evidence and therefore does not explain the

evident separation of blue and red edges. c, Bias in 2-hop network
neighbourhood for either CCSB-HI1 or LCI interactions. The frequency of
nodes with a given proportion of CCSB-HI1 interactions in their 2-hop
neighbourhood is depicted for the interactome network graph in b (solid
curve) and for a network in which the types of supporting evidence (CCSB-
HI1 or LCI) are randomly permuted among edges (dashed curve). The solid
curve indicates that most of the proteins in the network of b have either only
CCSB-HI1 or only LCI interactions in their 2-hop neighbourhood. In
contrast, neighbourhoods are well mixed when evidence labels are randomly
permuted among edges.

NATURE|Vol 437|20 October 2005 LETTERS

1175

Graphs, or networks, are a very powerful
way of capturing and storing knowledge.
However, the first view we get of our
data is usually something like this: a big,
tangled ball of wool. It looks impressive,
but it tells us very little.

One solution, is to look for building
blocks: small substructures that occur
often, and where they occur play the
same role. This is called motif analysis.

/32

An analogy
structure in text versus structure in graphs

3

Most frequent patterns

Null model
a distribution on books/graphs

Expectedness of frequency
with respect to null-model

the, be, to, of, and, a, … frequent subgraphs

frequency

p(fw)

w = “species”

frequency

p(fg)

g =

frequency of “species” in book

p(F > fw) < 0.05

frequency of in data

p(F>fg) < 0.05

To explain by analogy, imagine that you
are given a book, and you want to find
its building blocks. Your first approach
might be to simply look for frequent
substructures. This would give you a list
of words like the, be, to etc. This may be
useful, but it isn’t very specific to this
particular book: you’d get the same
result with any other English book.

To find patterns that are particular to this
book, we need a null model: a
probability distribution that tells us, for a
particular word, in this case “species”
what frequencies we are likely to see in a
book of this length.

We can then take the frequency of the
word species in our book, and and
compute the probability of seeing the
word “species” at least that often. If that
probability is very low, we can say that
we’ve seen the word unexpectedly often,
and it is therefore a characteristic word
for our book.

The same logic applies to graphs: we
count subgraphs, but we evaluate their
frequencies against those predicted by a
null model.

/32

the Problem
this is very expensive to compute

4

p(fg)

The problem is that for a given
distribution on graphs, the resulting
distribution on frequencies is very
expensive to compute. Usually, the best
we can do is to sample a large number
of graphs, and count the frequencies of
the subgraph in each, building up a
histogram approximation.

/32

Our solution
high-level intuition

❖ Compress the data using the subgraph g.

❖ Compare to compression under a null model (a baseline compressor).

5

We propose the following approach; we
compress the data using the fact that
subgraph g occurs very often. Then, we
compare the size of the compressed
graph to the compression achieved by a
baseline model.

If the first compressor does substantially
better, we consider the subgraph a
motif. This may seem like a radically
different approach, but we can frame it
in the same probabilistic terms as the
traditional method.

/32

Our solution
in probabilistic terms

❖ Minimum Description Length (MDL): Every probability distribution is a compressor and vice versa.

• Given p with probability p(x), we have L with codelength L(x) = 2-p(x)

❖ DON’T: Compute the probability of g having frequency f under the null model.

❖ DO: Compute the probability that Lmotif(g) << Lnull(g) under the null model.

• If g comes from pnull, no compressor can substantially beat Lnull.

6

/32

Results
a preview

❖ Graphs with billions of edges can be usefully analyzed in ~9 hrs on a single compute node.

❖ Quality of motifs found is comparable to the traditional method.

• We introduce a classification-based experiment for measuring this.

7

Here is a brief preview of the results; our
methods allows very large graphs to be
analyzed on modest hardware, and we
show that the quality of the resulting
motif is comparable to that of the
traditional method.

/32

Outline

❖ MDL hypothesis testing for pattern analysis

• preliminaries of MDL

• NHST testing with MDL

❖ Network motif analysis with MDL

• Motif code

• Null models

❖ Results

8

Here is the outline for the rest of the talk.

Traditional motif analysis is based on the
use of significance testing as a proxy for
pattern mining. Using ideas from
minimum description length theory, we
can put our method in the same
framework. We will discuss the basics of
MDL and how we can perform
significance testing with it.

We will then describe our motif code,
and the null models we use, and finish
up with some experimental results.

/32

Null hypothesis significance testing (NHST)
a heuristic for pattern interestingness

9

p(f)

If p(F > fg) < 0.05, then we call g a motif

fg

The traditional method is based on
significance testing.

Our null hypothesis is that the data came
from the null model. We then observe an
event, a high frequency of subgraph g,
that is so improbable under the null
model, that we can reject the null
hypothesis. The data couldn’t have
come from the null model.

The null model isn’t usually very realistic,
so this isn’t that interesting in itself.
However, we then use this as a heuristic
for whether a subgraph is interesting.
We say that any subgraph that allows us
to reject the null hypothesis, is
interesting.

To cast our method in the same
framework, we need to look at the
basics of the minimum description
length principle.

/32

MDL NHST
minimum description length for null-hypothesis significance testing

❖ Preliminary 1: Every probability distribution can be used as a code and vice versa.

10

0 1

db fea c

p(x) = 2-L(x)

L(x) = - log2 p(x)

0 00 0

1

1

1

1

The founding principle behind MDL is
that codes, i.e. compressors, can be
equated with probability distributions.

Imagine that we want to encode the six
target objects a through f. The codes we
use in MDL, so called prefix-free codes,
have the property that they can be
drawn as a binary tree with the target
objects on the leaves. The codewords
can be read off the path from the root to
the target leaf.

We can easily turn this into a probability
distribution: we start at the root, and flip
a coin to decede whether to move left or

right. A leaf will be chosen with
probability 2-to-the-power minus the
length of its codeword.

More surprising, is that the reverse is
also possible. If we allow a one-bit
margin of error, any probability
distribution can be turned into a code,
so that the length of the codeword for an
object is the negative logarithm of its
probability.

The takeaway is that we can equate
probability distributions and codes. A
distribution that assigns x a high
probability with assign it a short

/32

MDL NHST
minimum description length for null-hypothesis significance testing

❖ Preliminary 2: the no-hypercompression inequality.

• If x is sampled from pnull, then no code L* can compress x substantially better than Lnull.

• More precisely:

11

pnull(Lnull(x) - L*(x) ≥ k) ≤ 2-k

The second principle we will use is the
no hypercompression inequality. It states
that if we sample x from a distribution,
no other distribution will give us a better
compression than the code
corresponding to the source of x.

Specifically the probability that any other
code does better by k bits decays
exponentially. Note that this means that
seen an improvement of even 30 bits is a
one-in-a-billion event.

/32

MDL NHST
minimum description length for null-hypothesis significance testing

❖ Choose alternative code L* before seeing the data.

❖ Compute Lnull(x), L*(x)

12

Lnull(x)

L*(x)
k

❖ We can reject pnull as the source of the data with p-value 2-k

Using the no-hypercompression
inequality, we can define an MDL-based
hypothesis test: we define an alternative
code L*, before seeing the data, and if it
compresses x better than the code
corresponding to the null model, we can
reject the null model as the source of the
data with p-value 2-k.

/32

MDL NHST with parameter θ
minimum description length for null-hypothesis significance testing

❖ For example pnull(g): equal probability for all graphs with dimensions n, m (zero for all others).

❖ Two part coding Lnull(g) = Lprior(θ) + Lnull(g)

13

Lnull(x)

L*(x)
k

Lprior(θ)θ

n,m

❖ We can reject pnull, for all priors, as the source of the data with confidence at least 2-k

θ

If our null model has a parameter, we
need to deal with that. For instance, the
Erdos-Renyi model assigns equal
probability to all graphs with particular
dimensions (n, m). This is not a code for
all graphs. To make it one, we can use
two-part coding: we first use a different
code to store (n, m) and then use that
information to encode the graph using
the Erdfos-Renyi code. We call this first
code the prior.

This raises the question how much the
choice of prior influences the outcome.
To eliminate the choice entirely, we can
compare to the null code minus the prior,
which is always a lowerbound on the
total codelength. This makes things
harder for L*, but if we still manage to
reject the null model, we can reject it for
all possible priors.

/32

Example
is a particular clique unusually big?

❖ Let G be a large graph with clique C

• Is C unusually big?

❖ Traditional approach: measure clique sizes in a large sample from pnull, and compare.

❖ MDL: Design a code L* that uses the fact that C is a clique to compress.

• L*: record a list of nodes in C, remove all edges in C, store the remainder with Lnull.

14see also: A tutorial on MDL hypothesis testing for graph analysis, Bloem et al 2018

/32

Example
is a particular clique unusually big?

15

1

2 3

4

5
6 7

8 9

1

2 3

4

5
6 7

8 9

{3, 4, 6, 7, 9} +

LԳ(n(G)) Luniform(G)=B(G)n(g)

Lclique(G)

(a) (b) (c)

k

Figure 1: A simple example of graph analysis by MDL: finding cliques. (a) The
data. (b) A representation of the data that exploits the existence of a large
clique. We first store a set indicating which nodes belong to the clique. We
then store the graph, omitting those links that belong to the clique. (c) An
illustration of the principle of a bound. For a complete code on graphs, using
L

uniform, we need to first store the size of the graph using some arbitrary code
on the integers LN. To make sure that it does not matter which code we choose
for LN, we require our code (Lclique) to beat the bound B(G) (by at least k bits).

another. We will denote a codelength function with the letter L, ie. L(x) = |f(x)|.
It is common practice to compute L directly, without explicitly computing the
codewords. In fact, we will adopt the convention of referring to L itself as a
code.

A well known result in information theory is the association between codes
and probability distributions, implied by the Kraft inequality: for each probabil-
ity distribution p on X, there exists a prefix-free code L such that for all x 2 X:
- logp(x) 6 L(x) < - logp(x) + 1. Inversely, for every prefix-free code L for X,
there exists a probability distribution p such that for all x 2 X: p(x) = 2-L(x).
For proofs, see [4, Section 3.2.1] or [3, Theorem 5.2.1]. To explain the intu-
ition, note that we can easily transform a code L into a sampling algorithm for
p by feeding the decoding function random bits until it produces an output. To
transform a probability distribution to a code, techniques like arithmetic coding
[7] can be used.

As explained in [4, page 96], the fact that - logp⇤(x) is real-valued and
L
⇤(x) is integer-valued can be safely ignored and we may identify codes with

probability distributions, allowing codes to take non-integer values.
When we need to encode a single choice from a finite set S of options, we

can use the code with length log |S|, corresponding to a uniform distribution
on S. In some cases, we can allow codes with multiple codewords for a single
object. If a code L has multiple codewords for some object x, we may indicate
the choice for a particular codeword by a parameter a as L(x;a).

3

G

Lnull(x)

L*(x)
k

Lprior(θ)θ

L*:1

2 3

4

5
6 7

8 9

1

2 3

4

5
6 7

8 9

{3, 4, 6, 7, 9} +

LԳ(n(G)) Luniform(G)=B(G)n(g)

Lclique(G)

(a) (b) (c)

k

Figure 1: A simple example of graph analysis by MDL: finding cliques. (a) The
data. (b) A representation of the data that exploits the existence of a large
clique. We first store a set indicating which nodes belong to the clique. We
then store the graph, omitting those links that belong to the clique. (c) An
illustration of the principle of a bound. For a complete code on graphs, using
L

uniform, we need to first store the size of the graph using some arbitrary code
on the integers LN. To make sure that it does not matter which code we choose
for LN, we require our code (Lclique) to beat the bound B(G) (by at least k bits).

another. We will denote a codelength function with the letter L, ie. L(x) = |f(x)|.
It is common practice to compute L directly, without explicitly computing the
codewords. In fact, we will adopt the convention of referring to L itself as a
code.

A well known result in information theory is the association between codes
and probability distributions, implied by the Kraft inequality: for each probabil-
ity distribution p on X, there exists a prefix-free code L such that for all x 2 X:
- logp(x) 6 L(x) < - logp(x) + 1. Inversely, for every prefix-free code L for X,
there exists a probability distribution p such that for all x 2 X: p(x) = 2-L(x).
For proofs, see [4, Section 3.2.1] or [3, Theorem 5.2.1]. To explain the intu-
ition, note that we can easily transform a code L into a sampling algorithm for
p by feeding the decoding function random bits until it produces an output. To
transform a probability distribution to a code, techniques like arithmetic coding
[7] can be used.

As explained in [4, page 96], the fact that - logp⇤(x) is real-valued and
L
⇤(x) is integer-valued can be safely ignored and we may identify codes with

probability distributions, allowing codes to take non-integer values.
When we need to encode a single choice from a finite set S of options, we

can use the code with length log |S|, corresponding to a uniform distribution
on S. In some cases, we can allow codes with multiple codewords for a single
object. If a code L has multiple codewords for some object x, we may indicate
the choice for a particular codeword by a parameter a as L(x;a).

3

see also: A tutorial on MDL hypothesis testing for graph analysis, Bloem et al 2018

<- store using null model

Here’s an example for how to use an
MDL hypothesis test to show that a
clique in unexpectedly large. We first
design a code that uses the fact that
there is a large clique to compress the
graph: we store the nodes of the clique,
remove all its edges from the graph, and
store the remained. This information is
enough to reconstruct the graph.

When we store the rest of the graph, we
do so using the null model, so that the
only advantage the alternative code has
is that it knows the clique.

If this code beats the null model code by
k bits, discounting the prior, we can
reject the null model with confidence 2-k
and take this as a heuristic for the
meaning of the clique.

/32

Caveats and reminders

❖ We prove (statistically) that pnull is not the source of the data. We do not prove (in any sense)

that the pattern we used is interesting or characteristic. The NHST is a heuristic for pattern mining.

that the alternative model is the source of the data.

❖ In fact

pnull is usually chosen as a trade-off between scalability and power,

and so is p*.

❖ All of this is true for both the MDL and the traditional approach.

16

It’s important to emphasize that we are
proving only that the null model was not
the source of the data. We use the fact
that a pattern allows us to do this, as a
heuristic for the pattern being
meaningful, but we haven’t proved
anything about the pattern.

In fact, because the null model is usually
chosen as a tradeoff between scalability
and power, the fact that the null model
can be rejected is rarely surprising.

/32

Outline

❖ MDL hypothesis testing for pattern analysis

• preliminaries of MDL

• NHST testing with MDL

❖ Network motif analysis with MDL

• Motif code

• Null models

❖ Results

17

Now that have our framework in place,
we just need to define a motif code, and
some null models.

/32

Motif code

18

Bloem and de Rooij

the data G the subgraph G’ the template graph H

4

11

3

3
3

1 1
4
4

3
3 4

4

4 3

1

2

3 4

Figure 1: An illustration of the motif code. We store G0 once, and remove its instances
from G, replacing them with a single, special node. The links to special nodes are
annotated with ‘rewiring’ information, which tells us how to rewire the subgraph
back into H. Storing only H and G0 is enough to reconstruct the data.

M , add it to our subset M and remove all other instances that overlap with it. We continue
removing the first remaining instance until M is empty.

Encoding integers In the following, we will often need to encode single natural numbers,
or a sequence of natural number from a finite range. For single numbers, we will use the
code corresponding to the probability distribution pN(n) = 1/(n(n + 1)), and denote it
LN(n).

For sequences from a finite range, we use the code corresponding to aDirichlet-Multinomial

(DM) distribution. Let S be a sequence of length k of elements in alphabet ⌃. Conceptu-
ally, the DM distribution models the following sampling process: we sample a probability
vector p on [0, |⌃|] from a Dirichlet distribution with parameter vector ↵, and then sample k
symbols from the categorical distribution represented by p. The probability mass function
corresponding to this process can be expressed as:

pDirM
↵ (S | k,⌃) =

Y

i2[1,k]

DirM↵(Si | S1:i�1, k,⌃)

DirM↵(Si | S0, k,⌃) =
f(Si, S0) + ↵i

|S0|+
P

i
↵i

where f(x,X) denotes the frequency of x in X. We use ↵i = 1/2 for all i. Let LDirM
k,⌃ (S) =

� log pDirM(S | k,⌃). In essence, the DM model can be seen as encoding each element from
Si, using the smoothed relative frequency of Si in the subsequence S1:i=1 preceding it. Thus
the probability of a given symbol changes at each point in the sequence, based on how often
it has been observed up to that point.

Note that this code is parametrized with k and ⌃. If these cannot be deduced from
information already stored, they need to be encoded separately. When encoding natural

8

the data G the potential motif G’ the template graph T

Here is the basic principle behind our
motif code: we remove the motif from
the graph, replacing each instance by a
special motif node. These nodes are
annotated to indicate which node inside
the motif the edge connects to.

We store the motif once, together with
the template graph T. This information is
sufficient to reconstruct the graph. Note
that we’ve skipped a lot of details here
for the sake of time.

/32

Motif code

19

Bloem and de Rooij

Algorithm 1 The motif code Lmotif(G;G0,M, Lbase). Note that the nodes of the graph are
integers.
Given:

a graph G, a subgraph G0,
a list M of instances of G0 in G, a code Lbase on the simple graphs.

bsubgraph Lbase(G0) subgraph

replace each instance with a single node

H copy(G), W = [] template
for each M = {m1, . . .mn(G0)} in M:

We use m1 (the m1-th node in G) as the instance node

for each link l between a node nout not in M and a node mj in M :
if j 6= 1: add a link between nout and mj

W .append(j)
remove all nodes mi except m1, and all incident links

brewiring LDirM
|W |,n(G0)(W) rewiring

#Remove multiple edges from H and record the duplicates in R
R,H 0 simple(H)
btemplate Lbase(H 0)
bmulti-edges LN(max(R)) + LDirM

|R|,max(R)(R) multiple edges

binstances LN(|M|) log
�
n(H)
|M|

�
instance nodes

binsertions log(n(G))!� log(n(H))! insertions

return bsubgraph + btemplate + brewiring + bmulti-edges + binstances + binsertions

Pruning the list of instances Since our code accepts any list of motif instances, we are
free to take the list M and remove instances before passing it to the motif code, e↵ectively
discounting instances of the motif. This can often improve compression, as storing the
rewiring information for instances with high exdegrees may cost more than we gain from
removing them from the graph. We sort M by exdegree and search for the value c for which
compressing the graph with only the first c elements of M gives the lowest codelength.

The codelength Lmotif as a function of c is roughly unimodal, which means that a
ternary search should give us a good value of c while reducing the number of times we have
to compute the full codelength. We use a Fibonacci search (?), an elegant variation on
ternary search requiring only one sample per recursion.

Implementation The template part of the code can be time and memory intensive to
compute for large graphs, as it involves creating a copy of the data. For any given Lbase,
we can create a specific implementation which computes the codelength required for storing
the template graph without constructing H explicitly. This will speed up the computation

10

Bloem and de Rooij

Algorithm 1 The motif code Lmotif(G;G0,M, Lbase). Note that the nodes of the graph are
integers.
Given:

a graph G, a subgraph G0,
a list M of instances of G0 in G, a code Lbase on the simple graphs.

bsubgraph Lbase(G0) subgraph

replace each instance with a single node

H copy(G), W = [] template
for each M = {m1, . . .mn(G0)} in M:

We use m1 (the m1-th node in G) as the instance node

for each link l between a node nout not in M and a node mj in M :
if j 6= 1: add a link between nout and mj

W .append(j)
remove all nodes mi except m1, and all incident links

brewiring LDirM
|W |,n(G0)(W) rewiring

#Remove multiple edges from H and record the duplicates in R
R,H 0 simple(H)
btemplate Lbase(H 0)
bmulti-edges LN(max(R)) + LDirM

|R|,max(R)(R) multiple edges

binstances LN(|M|) log
�
n(H)
|M|

�
instance nodes

binsertions log(n(G))!� log(n(H))! insertions

return bsubgraph + btemplate + brewiring + bmulti-edges + binstances + binsertions

Pruning the list of instances Since our code accepts any list of motif instances, we are
free to take the list M and remove instances before passing it to the motif code, e↵ectively
discounting instances of the motif. This can often improve compression, as storing the
rewiring information for instances with high exdegrees may cost more than we gain from
removing them from the graph. We sort M by exdegree and search for the value c for which
compressing the graph with only the first c elements of M gives the lowest codelength.

The codelength Lmotif as a function of c is roughly unimodal, which means that a
ternary search should give us a good value of c while reducing the number of times we have
to compute the full codelength. We use a Fibonacci search (?), an elegant variation on
ternary search requiring only one sample per recursion.

Implementation The template part of the code can be time and memory intensive to
compute for large graphs, as it involves creating a copy of the data. For any given Lbase,
we can create a specific implementation which computes the codelength required for storing
the template graph without constructing H explicitly. This will speed up the computation

10

Bloem and de Rooij

Algorithm 1 The motif code Lmotif(G;G0,M, Lbase). Note that the nodes of the graph are
integers.
Given:

a graph G, a subgraph G0,
a list M of instances of G0 in G, a code Lbase on the simple graphs.

bsubgraph Lbase(G0) subgraph

replace each instance with a single node

H copy(G), W = [] template
for each M = {m1, . . .mn(G0)} in M:

We use m1 (the m1-th node in G) as the instance node

for each link l between a node nout not in M and a node mj in M :
if j 6= 1: add a link between nout and mj

W .append(j)
remove all nodes mi except m1, and all incident links

brewiring LDirM
|W |,n(G0)(W) rewiring

#Remove multiple edges from H and record the duplicates in R
R,H 0 simple(H)
btemplate Lbase(H 0)
bmulti-edges LN(max(R)) + LDirM

|R|,max(R)(R) multiple edges

binstances LN(|M|) log
�
n(H)
|M|

�
instance nodes

binsertions log(n(G))!� log(n(H))! insertions

return bsubgraph + btemplate + brewiring + bmulti-edges + binstances + binsertions

Pruning the list of instances Since our code accepts any list of motif instances, we are
free to take the list M and remove instances before passing it to the motif code, e↵ectively
discounting instances of the motif. This can often improve compression, as storing the
rewiring information for instances with high exdegrees may cost more than we gain from
removing them from the graph. We sort M by exdegree and search for the value c for which
compressing the graph with only the first c elements of M gives the lowest codelength.

The codelength Lmotif as a function of c is roughly unimodal, which means that a
ternary search should give us a good value of c while reducing the number of times we have
to compute the full codelength. We use a Fibonacci search (?), an elegant variation on
ternary search requiring only one sample per recursion.

Implementation The template part of the code can be time and memory intensive to
compute for large graphs, as it involves creating a copy of the data. For any given Lbase,
we can create a specific implementation which computes the codelength required for storing
the template graph without constructing H explicitly. This will speed up the computation

10

Bloem and de Rooij

Algorithm 1 The motif code Lmotif(G;G0,M, Lbase). Note that the nodes of the graph are
integers.
Given:

a graph G, a subgraph G0,
a list M of instances of G0 in G, a code Lbase on the simple graphs.

bsubgraph Lbase(G0) subgraph

replace each instance with a single node

H copy(G), W = [] template
for each M = {m1, . . .mn(G0)} in M:

We use m1 (the m1-th node in G) as the instance node

for each link l between a node nout not in M and a node mj in M :
if j 6= 1: add a link between nout and mj

W .append(j)
remove all nodes mi except m1, and all incident links

brewiring LDirM
|W |,n(G0)(W) rewiring

#Remove multiple edges from H and record the duplicates in R
R,H 0 simple(H)
btemplate Lbase(H 0)
bmulti-edges LN(max(R)) + LDirM

|R|,max(R)(R) multiple edges

binstances LN(|M|) log
�
n(H)
|M|

�
instance nodes

binsertions log(n(G))!� log(n(H))! insertions

return bsubgraph + btemplate + brewiring + bmulti-edges + binstances + binsertions

Pruning the list of instances Since our code accepts any list of motif instances, we are
free to take the list M and remove instances before passing it to the motif code, e↵ectively
discounting instances of the motif. This can often improve compression, as storing the
rewiring information for instances with high exdegrees may cost more than we gain from
removing them from the graph. We sort M by exdegree and search for the value c for which
compressing the graph with only the first c elements of M gives the lowest codelength.

The codelength Lmotif as a function of c is roughly unimodal, which means that a
ternary search should give us a good value of c while reducing the number of times we have
to compute the full codelength. We use a Fibonacci search (?), an elegant variation on
ternary search requiring only one sample per recursion.

Implementation The template part of the code can be time and memory intensive to
compute for large graphs, as it involves creating a copy of the data. For any given Lbase,
we can create a specific implementation which computes the codelength required for storing
the template graph without constructing H explicitly. This will speed up the computation

10

Bloem and de Rooij

Algorithm 1 The motif code Lmotif(G;G0,M, Lbase). Note that the nodes of the graph are
integers.
Given:

a graph G, a subgraph G0,
a list M of instances of G0 in G, a code Lbase on the simple graphs.

bsubgraph Lbase(G0) subgraph

replace each instance with a single node

H copy(G), W = [] template
for each M = {m1, . . .mn(G0)} in M:

We use m1 (the m1-th node in G) as the instance node

for each link l between a node nout not in M and a node mj in M :
if j 6= 1: add a link between nout and mj

W .append(j)
remove all nodes mi except m1, and all incident links

brewiring LDirM
|W |,n(G0)(W) rewiring

#Remove multiple edges from H and record the duplicates in R
R,H 0 simple(H)
btemplate Lbase(H 0)
bmulti-edges LN(max(R)) + LDirM

|R|,max(R)(R) multiple edges

binstances LN(|M|) log
�
n(H)
|M|

�
instance nodes

binsertions log(n(G))!� log(n(H))! insertions

return bsubgraph + btemplate + brewiring + bmulti-edges + binstances + binsertions

Pruning the list of instances Since our code accepts any list of motif instances, we are
free to take the list M and remove instances before passing it to the motif code, e↵ectively
discounting instances of the motif. This can often improve compression, as storing the
rewiring information for instances with high exdegrees may cost more than we gain from
removing them from the graph. We sort M by exdegree and search for the value c for which
compressing the graph with only the first c elements of M gives the lowest codelength.

The codelength Lmotif as a function of c is roughly unimodal, which means that a
ternary search should give us a good value of c while reducing the number of times we have
to compute the full codelength. We use a Fibonacci search (?), an elegant variation on
ternary search requiring only one sample per recursion.

Implementation The template part of the code can be time and memory intensive to
compute for large graphs, as it involves creating a copy of the data. For any given Lbase,
we can create a specific implementation which computes the codelength required for storing
the template graph without constructing H explicitly. This will speed up the computation

10

null model

Bloem and de Rooij

Algorithm 1 The motif code Lmotif(G;G0,M, Lbase). Note that the nodes of the graph are
integers.
Given:

a graph G, a subgraph G0,
a list M of instances of G0 in G, a code Lbase on the simple graphs.

bsubgraph Lbase(G0) subgraph

replace each instance with a single node

H copy(G), W = [] template
for each M = {m1, . . .mn(G0)} in M:

We use m1 (the m1-th node in G) as the instance node

for each link l between a node nout not in M and a node mj in M :
if j 6= 1: add a link between nout and mj

W .append(j)
remove all nodes mi except m1, and all incident links

brewiring LDirM
|W |,n(G0)(W) rewiring

#Remove multiple edges from H and record the duplicates in R
R,H 0 simple(H)
btemplate Lbase(H 0)
bmulti-edges LN(max(R)) + LDirM

|R|,max(R)(R) multiple edges

binstances LN(|M|) log
�
n(H)
|M|

�
instance nodes

binsertions log(n(G))!� log(n(H))! insertions

return bsubgraph + btemplate + brewiring + bmulti-edges + binstances + binsertions

Pruning the list of instances Since our code accepts any list of motif instances, we are
free to take the list M and remove instances before passing it to the motif code, e↵ectively
discounting instances of the motif. This can often improve compression, as storing the
rewiring information for instances with high exdegrees may cost more than we gain from
removing them from the graph. We sort M by exdegree and search for the value c for which
compressing the graph with only the first c elements of M gives the lowest codelength.

The codelength Lmotif as a function of c is roughly unimodal, which means that a
ternary search should give us a good value of c while reducing the number of times we have
to compute the full codelength. We use a Fibonacci search (?), an elegant variation on
ternary search requiring only one sample per recursion.

Implementation The template part of the code can be time and memory intensive to
compute for large graphs, as it involves creating a copy of the data. For any given Lbase,
we can create a specific implementation which computes the codelength required for storing
the template graph without constructing H explicitly. This will speed up the computation

10

Bloem and de Rooij

Algorithm 1 The motif code Lmotif(G;G0,M, Lbase). Note that the nodes of the graph are
integers.
Given:

a graph G, a subgraph G0,
a list M of instances of G0 in G, a code Lbase on the simple graphs.

bsubgraph Lbase(G0) subgraph

replace each instance with a single node

H copy(G), W = [] template
for each M = {m1, . . .mn(G0)} in M:

We use m1 (the m1-th node in G) as the instance node

for each link l between a node nout not in M and a node mj in M :
if j 6= 1: add a link between nout and mj

W .append(j)
remove all nodes mi except m1, and all incident links

brewiring LDirM
|W |,n(G0)(W) rewiring

#Remove multiple edges from H and record the duplicates in R
R,H 0 simple(H)
btemplate Lbase(H 0)
bmulti-edges LN(max(R)) + LDirM

|R|,max(R)(R) multiple edges

binstances LN(|M|) log
�
n(H)
|M|

�
instance nodes

binsertions log(n(G))!� log(n(H))! insertions

return bsubgraph + btemplate + brewiring + bmulti-edges + binstances + binsertions

Pruning the list of instances Since our code accepts any list of motif instances, we are
free to take the list M and remove instances before passing it to the motif code, e↵ectively
discounting instances of the motif. This can often improve compression, as storing the
rewiring information for instances with high exdegrees may cost more than we gain from
removing them from the graph. We sort M by exdegree and search for the value c for which
compressing the graph with only the first c elements of M gives the lowest codelength.

The codelength Lmotif as a function of c is roughly unimodal, which means that a
ternary search should give us a good value of c while reducing the number of times we have
to compute the full codelength. We use a Fibonacci search (?), an elegant variation on
ternary search requiring only one sample per recursion.

Implementation The template part of the code can be time and memory intensive to
compute for large graphs, as it involves creating a copy of the data. For any given Lbase,
we can create a specific implementation which computes the codelength required for storing
the template graph without constructing H explicitly. This will speed up the computation

10

Bloem and de Rooij

Algorithm 1 The motif code Lmotif(G;G0,M, Lbase). Note that the nodes of the graph are
integers.
Given:

a graph G, a subgraph G0,
a list M of instances of G0 in G, a code Lbase on the simple graphs.

bsubgraph Lbase(G0) subgraph

replace each instance with a single node

H copy(G), W = [] template
for each M = {m1, . . .mn(G0)} in M:

We use m1 (the m1-th node in G) as the instance node

for each link l between a node nout not in M and a node mj in M :
if j 6= 1: add a link between nout and mj

W .append(j)
remove all nodes mi except m1, and all incident links

brewiring LDirM
|W |,n(G0)(W) rewiring

#Remove multiple edges from H and record the duplicates in R
R,H 0 simple(H)
btemplate Lbase(H 0)
bmulti-edges LN(max(R)) + LDirM

|R|,max(R)(R) multiple edges

binstances LN(|M|) log
�
n(H)
|M|

�
instance nodes

binsertions log(n(G))!� log(n(H))! insertions

return bsubgraph + btemplate + brewiring + bmulti-edges + binstances + binsertions

Pruning the list of instances Since our code accepts any list of motif instances, we are
free to take the list M and remove instances before passing it to the motif code, e↵ectively
discounting instances of the motif. This can often improve compression, as storing the
rewiring information for instances with high exdegrees may cost more than we gain from
removing them from the graph. We sort M by exdegree and search for the value c for which
compressing the graph with only the first c elements of M gives the lowest codelength.

The codelength Lmotif as a function of c is roughly unimodal, which means that a
ternary search should give us a good value of c while reducing the number of times we have
to compute the full codelength. We use a Fibonacci search (?), an elegant variation on
ternary search requiring only one sample per recursion.

Implementation The template part of the code can be time and memory intensive to
compute for large graphs, as it involves creating a copy of the data. For any given Lbase,
we can create a specific implementation which computes the codelength required for storing
the template graph without constructing H explicitly. This will speed up the computation

10

Note that we only compute the
codelength directly. We are never
computing the actual codewords.

/32

Searching for subgraphs and instances
quick and dirty

❖ Take a short random walk, extract induced subgraph, repeat (1M iterations for all experiments).

❖ Keep a dictionary from (canonicalized) subgraphs to a list of known instances.

❖ This algorithm is

• O(1) in the size of the graph,

• very biased.

20

The motif code itself doesn’t tell us
which subgraphs to try. For that, we
need to generate candidate subgraphs,
and their instances in the graph.

Probably the fastest way of doing this is
to sample subgraphs by doing short
random walks. After a random walk, we
extract the induced subgraph of the
encountered nodes and keep a
dictionary mapping subgraphs to their
instances in the graph.

The running time of this algorithm is
independent of the size of the graph, so
very scalable. But because the
frequencies it returns are very biased, it
has never been reliable for traditional
motif analysis. In our method, this bias
doesn’t affect the correctness of the
hypothesis test.

/32

Null models
defining null models in the context of MDL

❖ Erdős-Renyi (ER) model: uniform distribution over all graphs with the same dimensions.

❖ Degree sequence (DS) model: uniform distribution over all graphs with degree sequence d.

❖ Edgelist (EL) model: approximation to the DS model.

• Strictly worse, but much cheaper to compute.

21

We’ve seen the Erdos-Renyi model
already, but a more common distribution
in motif analysis is the degree
sequence distribution, This distribution
which assign equal probability to all
graphs with the same degree sequence.

The DS model is a bit expensive to
compute, so we also introduce a
cheaper alternative, the EL model. This
model is strictly worse, but it can be
computed in linear time in the length of
the degree sequence.

In our experiments we will pay particular
attention to whether the EL model is an

acceptable proxy for the DS model,
since the use of the EL model is crucial
to making our method scalable.

/32

Null models
degree sequence model

: all graphs with degree sequence d𝒢d

pDS
d (G) =

1
|𝒢d |

LDS
d (G) = log |𝒢d |

LDS(G) = Lprior(#d) + Lseq
#d (d) + LDS

d (G)

22

Lnull(x)

L*(x)
k

Lprior(#d)d Lseq(d)#d

We’ve seen the Erdos-Renyi model
already, but a more common distribution
in motif analysis is the degree
sequence distribution, This distribution
which assign equal probability to all
graphs with the same degree sequence.

If we discount the prior on the whole
sequence entirely, the lowerbound
becomes much too strict to detect any
motifs. Instead we use a kind of three-
part coding approach. We first store the
frequencies of the degrees of d using an
arbitrary prior. Then we store the
sequence itself using a Dirichlet-
multinomial model, and then store the

For a directed graph the degree
sequence is a sequence of pair of
integers (the in- and outdegree).

/32

Edge list model

❖ Computing is expensive.

❖

|𝒢d |

LEL
d (G) = log |𝒮d |

23

|𝒢d | < |𝒮d |
contains some duplicates, but is very easy to compute|𝒮d |

The size of Gd is, unfortunately, difficult
to compute. As an alternative, we can
look at Sd: the set of all lists of edges
representing simple graphs with degree
sequence d. This represents the same
set of graphs as Gd, but some will be
counted double. We get the EL code by
replacing Gd with Sd.

This means our null model becomes
strictly less good, but much faster to
compute. For smaller graphs, we can
compute both, to see if the EL model
makes an acceptable proxy for the DS
model.

/32

Summary

24

LEL/DS(x)

Lmotif(x)
k

Lprior(#d)d Lseq(d)#d

<- log factor

/32

Outline

❖ MDL hypothesis testing for pattern analysis

• preliminaries of MDL

• NHST testing with MDL

❖ Network motif analysis with MDL

• Motif code

• Null models

❖ Results

25

/32

Results

❖ Synthetic data

• Sanity checks: are inserted motifs detected, are non-motifs left undetected?

❖ Medium-sized real world data

• Is the EL model an acceptable proxy for the DS model?

❖ Classification

• Are the subgraphs found characteristic for the data?

❖ Scaling up

• What can we do on a single compute node (8 cores, 64Gb) in 1-2 days?

26

We perform four experiments.

One on synthetic data, to see whether
the basic properties we expect of a motif
analysis hold.

On real world datasets to see whether
the degree sequence model and edgelist
model provide similar results.

On a graph classification dataset to
see whether the results of our analysis
are good at characterizing graphs.

And finally, we see how far we can scale
our method using a single compute

/32

Synthetic data

27

Large-Scale Motif Learning with Compression

Figure 2: The results of the experiment on generated data. The bottom row shows all 21 simple
connected graphs with 5 nodes (up to isomorphism). The middle row shows the number
of non-overlapping instances found by the sampling algorithm for ni = 0, ni = 10 and
ni = 100 from left to right, for each motif. The bars show the average value over 10
randomly sampled graphs, with the same subgraph (shown in red) injected each time.
The top row shows the di↵erence between the code length under the null model (the ER
model) and under the motif code. The error bars represent the range, ie. they are drawn
from the smallest to the largest observation.

physicians (directed, n = 241,m = 1098) Nodes are physicians in Illinois (??). Links
indicate that one physician turns to the other for advice. The full motif analysis took
31 minutes.

citations (directed, n = 1769,m = 4222) The arXiv citation network in the category of
theoretical astrophysics, as created for the 2003 KDD Cup (?). To create a workable
graph, we follow the procedure outlined in ?: we include only papers published before
1994, remove citations to papers published after the citing paper, and select the largest
connected component. The full motif analysis took 8 hours and 53 minutes.

All data sets are simple (no multiple edges, no self-loops). In each case we take 5·106 samples
with nmin = 3 and nmax = 6. We test the 100 motifs with the highest number of instances
(after overlap removal), and report the log-factor for each null model. For the edgelist
and ER models we use a Fibonacci search at full depth, for the degree-sequence model we
restrict the search depth to 3. For the degree-sequence estimator, we use 40 samples and
↵ = 0.05 to determine our confidence interval. We use the same set of instances for each
null model.

Our first observation is that for the physician data set, there are no motifs under the
degree-sequence null model. This likely because the physicians network is too small: the use
of a bound for the null model means that the alternative model requires a certain amount
of data before the di↵erences become significant. Note, however, that if we were to compare

17

For this experiment, we sampled a
medium sized graph and inserted a
number of instances of a specific motif.
The motif is the ‘house’ shape bottom
left, and the number of inserted motifs
was either 0, 10 or 100.

We then apply our method and compare
the frequency of subgraphs found to
their log-factor.

Note that:

• Many very high frequency subgraphs

exist, which are not motifs.

• The motifs are extremely low-

frequency.

• With just ten instances, the motif is

discovered.

• Some subgraphs that overlap with the

motif (containing triangles or
quadrilaterals) are also returned as
motifs.

/32

Real data
medium size

28See the paper for more results

Bloem and de Rooij

Figure 3: The results of the motif extraction on the 2 undirected networks.

18

Here is the result of one of the tests on a
real-world graph. We plot the log factors
for three different null models. Note that
the Erdos Renyi model disagrees with
the others, but the Degree-sequence
and Edgelist models follow a very similar
trend. We see this in all four datasets
tested, which suggests that for many
datasets the edgelist model will be an
acceptable proxy for the degree
sequence model.

/32

Classification
can we show that the resulting motifs are characteristic for the data?

❖ A good motif characterizes the data: the fact that G1 has the motif and G2 doesn’t is meaningful information in
the domain of the data

29

3

4

5
6 7

8 9

(a) (b) (c)

1

2 3

4

5
6 7

8 9

1

2

4

5
6

8 9

= class 1

= class 1

= class 2

...

= class 1

= class 1

= class 2

...

...

To test whether the motifs returned by
our method, using the EL model, are
useful, we perform a graph classification
experiment. We take a graph
classification dataset and check whether
the 29 graphs of 3, 4, or 5 nodes are
motifs.

This gives us a binary vector of size 29,
which use as a feature vector for the
graph. If the motif judgements are good
at characterizing the graphs, the
resulting feature vector should allow us
to solve the classification task. We apply
a linear SVM and report the test
accuracy.

/32

Classification

30

Large-Scale Motif Learning with Compression

data # nodes # links h K n m
AIFB 8 275 17 911 10 4 1877.11 7141.48
AM 1 495 566 2 393 604 3 000 11 2506.07 4392.06
BGS 333 613 362 627 250 2 3097.47 4404.49

Figure 5: The results of the classification experiment for the traditional method (‘counting’)
and ours (‘motive’). The bars show the mean accuracy of ten runs (with five-
fold cross-validation performed within each run. The error bars show a 95%
confidence interval (assuming normality). The white line shows the performance
of a majority-vote baseline (error bars are too small to be visible). For the AIFB
data set, the di↵erence is not significant (p = 0.14, in an unpaired t test). The
table shows the size of the data, the average size and number of links (n, m) of
the neighborhoods, the number of classes K and the number h of hubs removed.

nodes are allowed, but only with distinct labels. For performance reasons, we reduce this
to an undirected simple graph, linking two nodes if and only if they are connected by some
link in the original graph.

For each of these tasks we have a separate table linking a subset of the nodes—the
instances—to classes. For performance reasons, we use only 100 randomly chosen instances.
We repeat the complete experiment, from sampling instances to five fold cross-validation,
10 times

We use motifs to solve this task as follows. We extract the neighborhood around these
instance nodes to depth 3 to create instance graphs: small graphs representing the instance
to be classified. We then run a motif analysis on each instance graph, checking every
connected graph of 3, 4 and 5 nodes (29 in total). Each of these mini-graphs becomes
a feature: the feature is set to 1 if the mini-graph is a motif for the instance graph (at
↵ = 0.05), and 0 if it isn’t.

We removed the h strongest hubs from the data, so that the extracted neighborhoods
have manageable sizes. h was chosen by trial-and-error to achieve neighborhoods with
around 1000 – 2000 nodes. Above this range, the traditional method was too expensive,
and below it, our method didn’t have enough data to select motifs.

21

We can mainly looking to improve over
the majority-class baseline, indicated by
the white line. On all three datasets, our
method significantly outperforms this.

Compared to the traditional method (in
gray) we outperform it significantly on
one dataset, underperform significantly
on another, and we see no significant
difference on a third. Our method is
much more scaleable than the traditional
method, so there will be many cases
where a potential drop in performance is
acceptable.

/32

Scaling up
what can we do on one compute node?

31

Large-Scale Motif Learning with Compression

5.4 Large-Scale Motif Extraction

data disk n m |M| mem. t preload search motifs
wiki-nla 1 M 13 M 3–6 16 Gb 16 7m 8

3–6 5 Gb 16 13m 8
3–6 2 Gb 1 25m 8
10 11 Gb 1 2h 41m 0

X 3–6 1 Gb 1 8m 1h 30m 8
wiki-enb X 12 M 378 M 3–6 2 Gb 1 4h 58m 6h 6m 10

X 8 8 Gb 1 6h 5m 23
twitterc X 53 M 1 963 M 3–6 6 Gb 1 17h 12m 33h 19m 0

X 7 8 Gb 1 54h 26m 0
friendsterd X 68 M 2 586 M 3–6 6 Gb 1 42h 37m 45h 2m 68

X 3–6 56 Gb 9 8h 38m 68
X 10 7 Gb 1 35h 7m 57

a ??, multiple links were removed.
b ??, self-loops were removed.
c ??
d ?

Table 1: The results of various runs of the algorithm on large data sets. Sizes are rounded
to the nearest million. The second column indicates whether the graph was
stored on disk, or in memory. The ‘size’ column indicates the sizes of motifs
that were sampled. The t column shows the number of threads allowed to
run concurrently. The last column indicates how many significant motifs were
returned (under the EL model). Only the 100 subgraphs with the highest
number of instances after sampling were tested. All runtimes are rounded to
the nearest minute. The memory column indicates the maximum heapspace
allowed for the Java Virtual Machine. Preloading was always done with the
lowest amount of memory indicated for that data set, and can be sped up if
more memory is available.

The last section showed that our method can, in principle, return informative motifs,
when used with the edgelist null-model. Since the codelength under the EL model can be
computed very e�ciently, this configuration should be extremely scalable. To test its limits,
we run several experiments on large data sets ranging from a million to a billion links.

In all experiments, we sample 106 motifs in total (if multiple motif sizes are used, each
size is equally likely to be sampled). We take the 100 most frequent motifs in this sample
and compute their log-factors under the ER and EL models. We report the number of
significant motifs found under the EL model. All experiments were executed on a single,
dedicated machine, with 64 Gb of memory, and a single 2.60 Ghz Intel Xeon processor
(E5-2650 v2).

Table 1 shows the results. The largest data set that we can analyse stored in-memory
with comodity hardware is the wiki-nl data set. For larger data sets, we store the graph
on disk. The graph is stored in two lists, as it is in the in-memory version. The first, the

23

Finally we see what can be done on a
single compute node.

We use a single compute node with 8
cores and 64 Gb for these experiments.

Looking at the second-to-last line, we
see that if we use the full resources of
the node, we can perform a full motif
analysis, returning many candidates in
under 9 hours. If we further limit the
resources to those of an average
consumer laptop, the time of analysis
increases to as much as two days, but
the experiment is still feasible.

/32

Conclusions

❖ We moved the goal-posts a bit, but the result is a very scalable method with some additional advantages

• Conservative hypothesis test

• Accurate computation of low p-values (if we get a high compression)

• No accurate search for or count of instances required. Any set of instances provides a valid test.

• Comparison between multiple motif sizes

❖ Many subtleties to use and interpretation

• Should we care about multiple testing?

• Is the choice of null model important?

• These are discussed at length in the paper. Feel free to ask in the Q&A or at vu@peterbloem.nl.

32

In conclusion, we present a very
scaleable approach to motif analysis,
and more generally, to pattern mining
using null-hypothesis testing. Our
approach has many other benefits,
including the use of a strictly
conservative hypothesis test and very
accurate computation of low p-values.

There are many subtleties to the
interpretation of these results. These are
discussed at length in the paper, and we
would, of course, be happy to answer
any questions in the Q&A session.

