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'S CHALLENGES FOR STANDARD ML PRACTICE:
' to Interpret.

* Hyperparameter tuning on private data reduces the privacy budget.
* Ad-hoc privacy attacks are often required to test model privacy.

We introduce three tools to make differentially private machine learning more practical:

1. Simple sanity checks which can be carried out before seeing the data.

2. An adaptive clipping bound to reduce the effective number of tuneable privacy parameters.

3. We show that large-batch training improves model performance.

Deep neural networks can easily
memorize training labels in image
classification, even on randomly labeled
data [1]. Under differential privacy, such

memorization should not be possible. This
allows us to calibrate our privacy
parameters: if the model is able to learn a
randomly labeled task, the privacy
parameters are insufficiently strict.

Hyperparameter optimization under
differential privacy can be a costly
procedure. Each model we test eats into
the privacy budget. For effective learning
under differential privacy, we should
eliminate hyperparameters as much as
possible.

We test an adaptive approach to
determining the clipping bound
parameters in the DPSGD algorithm [2].

When we compute a single gradient
update over a large batch, less noise and
clipping are required to ensure privacy.
However, small batches often lead to
more effective learning.

Several methods exist to train effectively
with large batches [3]. We investigate the
simplest of these: increasing the base
learning rate linearly with the batch size.
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