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gradient descent, any gradient whose `2-norm exceeds C is scaled such that its norm is C, and
Gaussian noise with a variance of �C is added to the gradient. DPSGD can be combined with
the moments accountant [1], which tracks and controls privacy spending such that it stays within
the privacy budget defined by parameters ✏ and � of the DP framework. Privacy-sensitive data often
contains multiple records per user, with user identity the sensitive attribute. In such settings, training
is often federated over the users: each computes a gradient update over their data, applies noise, and
the gradients over all data are aggregated centrally. The DP-FedAvg framework [8] is a popular
extension of DPSGD to the federated setting.

2 Methods and experiments

We perform three experiments, each intended to improve a different part of the DP learning work-
flow. Section 3 discusses how these are combined into a practical approach to private deep learning.

2.1 Memorization under differential privacy

In [11], it was shown that deep neural networks can easily memorize training labels in image clas-
sification, even on randomly labeled data. Under differential privacy, such memorization should
not be possible.1 This allows us to calibrate our privacy parameters: if the model is able to learn a
randomly labeled task, the privacy parameters are insufficiently strict.

We train the small Alexnet architecture from Zhang et al. [11] for 60 epochs on a dataset of 50,000
random noise examples. We train two models: one with the DPSGD algorithm, extended with
momentum and one with non-private SGD with momentum. In the first experiment the models are
trained on random noise and the training accuracy is reported. In the second experiment, the same
models are trained on the CIFAR-10 task. Here, the test accuracy and difference between train and
test accuracy are reported for both models. The differentially private models use � = 0.7225 for
each layer and a batch size of 128, resulting in ✏ = 20 for � = 1

N1.1 after 60 epochs. Layers are
clipped independently using a clipping bound C = 2.0. The results are reported in Figure 1.

Even with a large privacy spending, DP effectively prevents memorization of random noise, while
being capable of learning on real data, with a small reduction in performance.

Memorization in user level differential privacy As noted in the preliminaries, privacy sensitive
data often contains many records per user. In this experiment, we will test memorization in a user-
level differential privacy setting, using the DP-FedAvg framework.

We generate two 10-class datasets of 1,000 users with 10 records each, resulting in 10,000 records.
All records contain 28⇥28 random noise images. All records of one user are assigned the same
(random) label. For Np of the 10,000 records, a pattern is inserted: in the 14⇥14 upper left patch,
all pixels are set to 1.0 and the label is set to 1. In one, the centralized dataset, the pattern is inserted
only into the records of one user, in the other, the distributed, it is inserted uniformly over all records.

1The idea that “differential privacy implies generalization” is considered folklore [10].
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DIFFERENTIALLY PRIVATE LEARNING POSES CHALLENGES FOR STANDARD ML PRACTICE:  
• Privacy guarantees are difficult to interpret. 
• Hyperparameter tuning on private data reduces the privacy budget. 
• Ad-hoc privacy attacks are often required to test model privacy. 

We introduce three tools to make differentially private machine learning more practical:  

1. Simple sanity checks which can be carried out before seeing the data. 

2. An adaptive clipping bound to reduce the effective number of tuneable privacy parameters. 

3. We show that large-batch training improves model performance.
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Three Tools for Practical Differential Privacy

1. sanity checks

Deep neural networks can easily 
memorize training labels in image 
classification, even on randomly labeled 
data [1]. Under differential privacy, such 
memorization should not be possible. This 
allows us to calibrate our privacy 
parameters: if the model is able to learn a 
randomly labeled task, the privacy 
parameters are insufficiently strict.  

Patterns inserted for only one user should not 
improve performance. We can calibrate our 
privacy parameters by ensuring that such 
patterns inserted in random data do not 
improve accuracy beyond chance.Figure 2: Training MLPs with centralized or distributed patterns

MLP on centralized dataset MLP on distributed dataset Np = 100

Figure 2 shows the results. For more details, see [9]. As expected, in the centralized setting, we are
able to learn the pattern without differential privacy but not with differential privacy.

Distributed patterns should be learned. Using the proportions of the centralized setting, DP is too
constrictive, but when we increase the occurrence of the pattern, we see that learning is possible.

2.2 Adaptive clipping

One of the main challenges for training with DPSGD is choosing a good clipping parameter C.
To illustrate the difficulty, Figure 3 shows the `2-norm of the gradient per layer over the course of
training for a non-private model. Two observations can be made. First, the `2-norms of layers may
be very different in the beginning of training compared to the end of training. Second, the size of
the gradient may differ between layers, and between weights and biases.

Combining these two observations, we propose a gradient-aware clipping scheme. This
adaptive clipping schedule uses the differentially private mean `2-norm of the previous
batch times a constant factor ↵ as the `2 norm bound for the current batch L. We de-
fine the per layer clipping bound Cl

t for round t and layer l over the individual gradi-
ents from that layer of the previous round glt�1(xi) and privacy parameters �l2 and Cl
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t�1. We choose � = 2 and initialize Cl

l20
by training for one iteration on random noise and extracting the mean `2-norm.

We train two versions of the small Alexnet model with the DPSGD algorithm, this time without
momentum. The first uses a constant clipping bound, optimized by a grid search over C [9]. The
second uses the adaptive clipping scheme with ↵ = 1.1. For the adaptive model, we increase the
gradient noise scale � to 0.725 and use an `2-norm noise scale �l2 = 2.5 to use the same privacy
budget as the non adaptive model. The test accuracy is reported for both models in Figure 4. With
adaptive clipping the accuracy climbs from 61.6% to 63.5%.

Figure 3: `2 norms Figure 4: Test accuracy vs clipping methods
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Test accuracy on random data, with a pattern inserted 
for a single user. With differential privacy and without.

Test accuracy with a pattern 
distributed over all users.

Hyperparameter optimization under 
differential privacy can be a costly 
procedure. Each model we test eats into 
the privacy budget. For effective learning 
under differential privacy, we should 
eliminate hyperparameters as much as 
possible. 

We test an adaptive approach to 
determining the clipping bound 
parameters in the DPSGD algorithm [2]. 
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The l2 norms (which are clipped in DPSGD) 
vary considerably between parameters and 
between epochs.
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Adaptive clipping determines the clipping 
parameter Ct on the basis of the norms of the 
gradient updates for parameter l at epoch t-1.

l

When we compute a single gradient 
update over a large batch, less noise and 
clipping are required to ensure privacy. 
However, small batches often lead to 
more effective learning. 

Several methods exist to train effectively 
with large batches [3]. We investigate the 
simplest of these: increasing the base 
learning rate linearly with the batch size. 

We replaced parameter C with ↵, � and �l2 . However, the model is very robust to changes in � and
�l2 . Doubling the values of either � or �l2 yields very similar test accuracy. Because our approach
is adaptive, we expect a single parameter value for ↵ leads to good performance across tasks.

To examine this hypothesis, we carried out additional experiments on MNIST, CIFAR-10 and
CIFAR-100 (reported in [9]). An ↵ value of 1.0 is near the optimum for all datasets. This sug-
gests that adaptive clipping results in parameters that are easier to choose without seeing the data. A
broader investigation across datasets is required to test this hypothesis further.

2.3 Large batch training

Training with larger batches reduces privacy spending. To illustrate, Figure 5 shows the noise added
per example as a function of batch size (using the the moments accountant from [1] to find the
minimum � that fully uses a pre-defined privacy budget in 10 epochs for a training set of 60,000
examples). Large batches dramatically reduce added noise. However, large batches can strongly
hurt performance. In Goyal et al. [5], several methods are introduced to improve the performance
of large-batch training. We adopt the simplest: scaling the learning rate along with the batch size.

We train small Alexnet models with varying batch sizes on CIFAR-10, using the DPSGD algorithm
for 60 epochs with a budget of ✏ = 20. A base learning rate of 0.01 is used for a batch size of 128.
We increase both the the batch size and learning rate by a factor of k, and repeat the experiment. We
train each model for 60 epochs, until an accumulated privacy loss of ✏ = 20 ±0.05 after 60 epochs
is found. Table 1 shows the results: training DP models with larger batches can be beneficial, but
only when the learning rate is scaled accordingly.

Figure 5: �/example vs batch size Table 1: Batch size versus accuracy

Batch size accuracy
128 61.6%
512 64.2%
1024 66.9%
1024 (base lr) 47.2%

3 Conclusion

For differentially private learning, hyperparameter optimization on sensitive datasets is undesirable.
The proposed methods enable an approach to differentially private learning with reduced privacy
spending on hyperparameter tuning before training the final model. Given a classification task and
data dimensions, we suggest the following approach to choosing the differential privacy parameters:

• Choose a model that is successfully tested on a non-private, similar benchmark tasks and
use default hyperparameters.

• Choose the largest batch size that fits in memory on the training device(s) and scale the
learning rate accordingly.

• Calibrate the noise scale parameter with the DPSGD [1] or DP-FedAvg [8] model on a
centralized dataset of random noise until the sanity checks succeed.

• When all sanity checks have passed, train on private data with the same budget. Use a
small portion of the budget for computing the differentially private mean `2-norm and use
the adaptive clipping method of Section 2.2 with default values ↵ = 1.0, � = 2.0.

These steps combined, provide the structure of a basic differential privacy training workflow. This
is far from a full-proof approach: the sanity checks function more as unit tests than hard guarantees,
some architectures, like conditional models [2], are not yet supported, and it is not clear whether this
approach is sufficient when adversaries actively attempt to influence the training process, such as in
the privacy attacks proposed by Hitaj et al. [6]. We hope that our approach provides a basis that can
be extended to study such questions.
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For a fixed privacy budget and number of 
epochs, far less noise is required to 
ensure differential privacy, if we train 
with large batches.

We use the DPSGD moments 
accountant to find the 
minimum σ that fully uses a 
pre-defined privacy budget in 
10 epochs for a training set of 
60,000 examples. 

Starting with base learning rate, optimised for 
small batches, we can increase batch size 
and maintain performance if we scale the 
learning rate by the same factor as the batch 
size.
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