Kolmogorov complexity

approximation, separation and identification
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This presentation was given in 2022 as part of the AIT & ML symposium.
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It includes content from these two papers, published in 2014 and 2015.

talk structure

Part one: Approximating Kolmogorov complexity
Part two: Separating structure from noise

Part three: Outlook
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Approximating Kolmogorov complexity

jmation
yoximation
A Safe App’ S O
omp
(O
mogor
for Kol
2, and Pieter
| Luis Antunes’s
Mota?, Stoven de R
3 Francisco Mota® S
Peter Bloew' ; -
a Network Eugumu‘\g .
+ st ot N Sorton st
TR o :()\\lu for Telecommunic™
“Va&P"‘E""f:e:‘ l‘\I‘*\l:.S(‘—Pmtu LA m‘\‘ti ‘OTP(,M ’
fmota0fuota-
w1t
anction
gl ) s ry given Pr ecisic
o m“\“ﬂv"{hi\t not to mn‘t: n"y"g‘; R
from above o e
.d from below

olmogo!
qmated

Abstract: K
roximate

an be appro¥ :
s vabability that (€ S
e o same ¢
iy i b WO s it
onially with o
exponeitl e (NID) and ¥

imation.
§ the approximet!

o e ety o

« And yet...

ey £ Vi1

ke

Kolmogorov complexity cannot (really) be approximated
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More precisely, we can approach Kolmogorov complexity from above, but not to a given precision, and we

cannot approximate it from below.



preliminaries

U(iq) = Ti(q)

K(x) = min{ [p[: U(p) = x}

Finite strings only, no prediction

TMs as probability distributions

Feed a (prefix-free) TM random bits until it produces

A omm
NN, - g

p:IM(p)=x

00 4\ 10 L\
L'(x) = min{lp| : TM(p) = x}

010 011 10 1M L%(x) = —logp(x)
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If your TM is a universal Turing machine, then L1 and L2 correspond (up to a constant). But for other TMs,

they may disagree arbitrarily much.

Taken over all TMs the set of probability distributions we can define this way (or more accurately, probability

semimeasures) corresponds to the lower semicomputable semimeasures.

safe approximation

no gos:

« Approximation from above (to a given precision)
« Approximation from below

« Even if we constrain the model class

safe approximation:

« The approximation is correct within k bits

« With exponentially large probability

The no-go’s have long been established as approximations for K that cannot be computable.

Safe approximation is an alternative that is still possible.



safe approximation

L'is a safe approximation of L iff:
p(L'(x) —=L(x) > k) <cb™ "

properties:
« lowerbounding implies domination implies safety

« Safety is transitive (although b may change)

If we know where x came from can we safely approximate K(x)?

Model-bounded Kolmogorov complexity

Model class C: computably enumerable subset of Turing machines.
« For example: PSPACE, P, Markov models, DFAs, Pitman-Yor processes.

« Any MDL model (class).

Universal model for C:

U€(ip) = TM:(p)

If we know x was produced by aTM in C can we safely approximate K(x)?

12

We get the well known resource-bounded Kolmogorov complexity as a special case when we define C with a
resource bound on our TMs, but really any model class commonly used in statistics can be a model class in
class bounded KC. We just have to frame it in terms of a distribution on bitstrings. A lot of this work has been
done already in MDL.

We lose a lot of the nice properties of KC. Most importantly, the invariance.



(this is just Bayes/MDL)

- log prior(l)

P

\ - log Likelihood(x|i)

Correspondence to Bayes

KC(x) = min{lp\ S US(

p)=x}

First up, the naive way to define class-bounded KC—the smallest program on our class universal TM that

produces x— does not result in a safe approximation.

If we can just point to the internal node highlighted in blue, it doesn't matter what else we feed the TM, the
outcome beyond that will always be x. The non-limited Kolmogorov complexity can take advantage of this
fact, and find some representation that just points to this internal node. The model bounded Kolmogorov

complexity cannot do this: it can only pick leaf nodes in this tree. By making the subtree below the internal

bigger, we can make the difference between K¢(x) and K(x) arbitrarily big.

In short, the shortest program for x on UC€ is not a safe approximation for the Kolmogorov complexity, even is x

Option 2: mC(x)

xxxxxxxx

Each path from the root to an x node represents a code, and with it some probability mass. Adding up all that

probability mass gives us a codelength equivalent to the shorter code in the previous slide.

If we want a good approximation of K(x) we need to consider the mass of all programs on our UTM.



- log mC is safe against m¢

mC(—logm®(x) —K(x) > k) =m(m(x) < 27*2 X))

< Z 27k27K(x]

x
_ 27k Z 27K(X) < 27k

=m
C
= m
sznIC[x)gz kg —K(x) (

With this we have a safe approximation.

- log mC is safe against members of C

mC(X) = Z quq(x) > quq(x)

qecC

\Y%
z

cqpq(—logm©(x) —K(x) > k) < m(—logm®(x) — K(x)
<27k

We are also safe against any member of C. This is the more important property. We can now assume that our

data cam from a member of C and safely approximate it.
For example, if we assume that the process that generated our data can be simulated on a polynomial-time
Turing Machine, we can take P as our model class and we have shown that the Kolmogorov complexity of any

such data may be safely approximated.

The approximation may be still be very expensive to compute (likely not polynomial), but it is at least computable.

So...

Kolmogorov complexity can be safely approximated by computable means.
No need to blindly plug in zip for K(x):
« Any probabilistic model is a suitable aproximation.
« You don't need to compute the actual code. Just its length.
If you can compute the Bayesian mixture for C, you can safely approximate C.
If not, safety is transitive...

« Perhaps you can safely approximate the Bayesian mixture?

It's exponentially unlikely that we'll ever see any data for which the Kolmogorov complexity differs

substantially from a good computable approximation.



Extended CT thesis

"The universe cannot compute anything superpolynomial”

Separating structure from noise

NB: We're moving away from approximation land for this part. We're happy with uncomputable functions for

the time being.

Kolmogorov complexity

Interesting data lives somewhere between very compressible and highly uncompressible data. This is not a

defining feature, however, since we can also make very uninteresting data that is medium-compressible.

Can we quantity this vertical axis? What makes data interesting. Could this be an objective quantity?



- The broad idea of sophistication is that we can two-part code the string x. We first describe a TM and the the
sophistication

input to that TM that will cause it to produce x. If this two-part description is optimal (i.e. close to K(x)) then the

The amount of structured information in a string . . . . . . . .
amount of bits we spend on the TM is an indication of the interestingness of the string.
TMi(p) = x

TMi: model

ol informati We allow a small amount of slack (indicated by the dotted line), usually some constant number of bits, and
p: residual Information

(. p): description of then pick the two-part representation with with the smallest model description inside this slack region.

residual information

o
SQPL\LSE@HOV‘/E model mformation
Alot of very smart and famous people have made the case for this kind of separation of structure and noise.
the structure sophistication facticity
function
\ . . PRl .

% Despite that fact, we will take a critical perspective here.

(strong) algorithmic meaningful  effective complexity
sufficient statistic information

Why do we like Kolmogorov complexity so much?

« Kmeasures information.
« Kis unbounded.

« Kisinvariant. K (x) * KY(x)




desiderata

« S(x) should measure structural information.
« S(x) should not be bounded.
« K(x) - S(x) should also not be bounded.

» SU(x) should be invariant to the choice of U.

index sophistication

K(x) = min{[tpl : T:(p) =}

model i,,\§urmat'mv\) residual nformation

We will start with a type of sophistication that goes catastrophically wrong very quickly.

the problem with index sophistication

V(0...01p) = Ti(p)

| |
2izeroes

residual information

model information 27

With index sophistication, picking a bad index representation causes the structural information in every string

to blow up massively.

Note that the resulting K(x) is still efficient. We just have to describe a UTM with a better index representation

and switch to that one.

This jump to a more efficient UTM will happen for every string, so the index sophistication becomes bounded

to the size of the first efficient UTM in the enumeration.



sophistication To prevent this problem, most authors requires an efficient description of the model: we can not use more bits

than the Kolmogorov complexity of the model.
Make sure that the model is described efficiently.

K(f) = min{K(i) : TM; f
() = min k() computes f} This solve the catastrophe of index sophistication, but we can still have two problems: undercutting and

f(p) = x overfitting.
K(f): model size

|p|: residual size

residual information

K(f) + |p|: total size

28 model information

underfitting Underfitting happens when the UTM is small enough to appear in the slack region. If that happens, we have a

two-part representation for every string where the model part is just the UTM. Le. the sophistication is never
bigger than the size of the UTM.

residual information

model information
29

To prevent this, most authors eliminate the UTM by restricting themselves to total functions (thos that have
halting TMs).

underfitting: total functions

UA(p) : simulate U(p) for at most
Ackermann(p) steps.
« Total function.

This doesn’t really fix anything practically. We can very simply set a huge resource bound on the UTM making

« Reaches KC for almost any "normal”

string. it a total function.

residual information

« There are UTMs for which S(x) always
selects UA as a model (if x is normal).

The result is that there are strings with arbitrarily high sophistication, but only if they take beyond the age of

the universe to unpack from their shortest description. Nothing we are likely to encounter in the world will

model information

have nontrivial sophistication.




overfitting

residual information

model information
31

overfitting

There exist UTMs for which the singleton models will always compress better than any
other representation by an arbitrary constant amount.

So either S(x) is always equal to K(x), or it is not invariant.

Who is guilty of what?

Inefficient indices

« Affects some definitions

« Disastrous, S(x) is highly dependent on UTM
Underfitting

« Affects all known versions

 S(x) doesn't work as advertised

Overfitting

« Affects most versions

« S(x) is not invariant, or equal to K(x)




Outlook

What has changed since 2014, 2015?

2013

Deep Learning of Representations:
Looking Forward

Yoshua Bengio

Department of Computer Science and Operations Research
Université de Montréal, Canada

Deep learning research aims at discovering learning algo-
rithms that discover multiple levels of distributed representations, with
higher levels representing more abstract concepts. Although the study of
deep learning has already led to impressive theoretical results, learning
algorithms and breakthrough experiments, several challenges lic ahead.
This paper proposes to examine some of these challenges, centering on
the questions of scaling deep learning algorithms to much larger models
and datasets, reducing optimization difficulties due to ill-conditioning or
local minima, designing more efficient and powerful inference and sam-
pling procedures, and learning36> disentangle the factors of variation

the nhserved data Tt alsn nronnses a few f Llnnlkine

deep neural networks as models /model classes?

5 [cs.LG] 1Nov 2018

The Description Length of Deep Learning Models

Léonard Blier Yann Ollivier
le Normale Supérieure Facebook Artificial Intelligence Research
Paris, France Paris, France
leonard.blierOnormalesup.org yolefb. com
Abstract

Solomonoffs general Ihwn of inference (Solomonoff, 1964) and the Minimum
Deseription Length p d, 2007; Rissanen, 2007) formalize Oc
cam' s faror, and hold that  ood model o data s  model that s good a o
compressing the data, including the cost of describing the model itself. Deep ne
Tal networks might seem to go against this principle given the large number of
parameters to be encoded.

We demonstrate experimentally the ability of deep neural networks to compress
the training data even when accounting for parameter encoding. The compression
viewpoint originally motivated the use of variational methods in neural networks
(Hinton and Van Camp, 1993; Schmidi@er, 1997). Unexpectedly, we found that
these variational methods orovide surprisinglv poor ‘hounds. despite




Is SGD safe against the model class of NNs?

possible weights of one NN

NNs as practical complexity hierarchies

Models with arbitrary depth:
« Transformer blocks
« Resnet blocks

Data is interesting if a complex model is required to optimally compress it.

compressed size

model depth 38

No two part coding required

conclusions

Kolmogorov complexity can be safely approximated
« We can do better than just plugging in ZIP.
Separating structure from noise objectively is probably impossible.

Deep learning provides some exciting opportunities.







