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Abstract

We investigate the use of randomly generated data for the sake of pre-
training a model. We justify this approach theoretically from the perspective
of algorithmic complexity, building on recent research that shows that se-
quence models can be trained to approximate Solomonoff induction. We
derive similar, but complementary theoretical results. We show empirically
that synthetically generated data can be used to pre-train a model before the
data is seen. We replicate earlier results that models trained this way show
zero-shot in-context learning across a variety of datasets, and that this per-
formance improves with scale. We extend earlier results to real-world data,
and show that finetuning a model after pre-training offers faster conver-
gence and better generalization.

1 Introduction

Even in the domain of natural language, where vast amounts of data are avail-
able, machine learning is approaching the point where the amount of data on

Z’WY,!X#R_M!IK@JQ!?.>Z\_0&2L%V2G1D4’!
;5;;’6 BUB5CBBBB5Z55BX’X5ZUZZ5P%X555Z5
E$QFGQ.!XQN*Q,.!.,G**GFFFFF^^FPQ^!YQF
\^R5D#**JI,DTTTT,TTTS\TITIDSDT*TTTT\\

Figure 1: ( ) A string of randomly sampled characters. ( ) The
result of passing this string through three randomly initialized neural network
models. The latter data is partly predictable, and so has value for pre-training.
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Taking random noise and passing it through 
a computer creates more valuable noise.
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in theory
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NB: We're moving away from approximation land for this part. We're happy with uncomputable functions for 
the time being.
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monotone vs prefix
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monotone prefix

TM

one way

one wayoutput tape

input tape

TM

one way

two way

distributions on infinite sequences 
sequential prediction p(xi | x<i)

distributions on finite sequences 
“object” prediction p(x)
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preliminaries
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 TM
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Finite strings only, no prediction

http://peterbloem.nl/publications/up
http://peterbloem.nl/publications/up


/30slides: peterbloem.nl/publications/up

TMs as probability distributions / semimeasures

Feed a (prefix-free) TM random bits until it produces 
an output.
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<latexit sha1_base64="w9CTbSK3C3JqWr25w4th5HwBZac="></latexit>

p(x) =
X

p:TM(p)=x

2-|p|

If your TM is a universal turing machine, then L1 and L2 correspond (up to a constant). But for other TMs, they 
may disagree arbitrarily much.

Taken over all TMs the set of probability distributions we can define this way (or more accurately, probability 
semimeasures) corresponds to the lower semicomputable semimeasures.
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class-bounded Kolmogorov complexity KC(x) 
see also my presentation at the previous AIT symposium: peterbloem.nl/publications/safe-approximation

• Pick a subset C of prefix TMs corresponding to some model class. 
e.g. Markov models, VAEs, Diffusion models, all polynomial-time TMs 

• Assign some prior probability p(c) to each c in C.  

• Compute the mixture probability mC(x) of x under C with prior p. 

• The class-bounded Kolmogorov complexity is -log mC(x). It is 

computable if every c in C is well-behaved (“sufficient”) 

a safe approximation of K(x) if x was generated by a model in C.
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mC(x) =
→

c→C

p(c)pc(x)
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domination

p(x) dominates q(x) if for all x 

m(x) dominates any computable distribution 

mC(x) dominates any distribution in C
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! log p(x)+c < ! logq(x)

p(x)→c > q(x)
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sequences. This holds even if the neural networks themselves are bounded in
size.

4.1 Model-bounded algorithmic complexity

Let C be an enumerable subset of Turing machines. Let p(c) be a computable
distribution on the members c of C.

Let mC(x) be distribution from which we sample by first sampling c from
p(c) and then sampling x from c as described in the preliminaries.

In [3], it is shown that for all x and all c in C:

mC(x)
→
> pc(x) or equivalently ! logmC(x)

+
< ! logpc(x)

Where a(x)
+
< b(x) indicates that a(x) is bounded from above by the func-

tion b(x) + c for some constant c and similarly, a(x)
+
> b(x) means that a(x) is

bounded from below for some constant c.
This result shows that mC always assigns any x greater probability than any

individual member of C, up to a multiplicative constant independent of x and
equivalently the code corresponding to mC(x) compresses better than the code
corresponding to any individual member of C up to an additive constant number
of bits.

The relevance to our current purpose is that if we sample data from any
distribution c → C, and then use mC to compress it, our regret (for not having
used the optimal c) will be bounded by a constant.

In [3] conditions are given under which mC() can be approximated com-
putably: all TMs in C must be sufficient (they must halt eventually if fed suffi-
cient bits). This also ensures that mC can be sampled from in finite time.

The following lemma shows a simple domination result between classes.

Lemma 4.1. For model classes C,D if D contains a turing machine u((i, x)) =
Ti(x) with i enumerating C and (, ) a prefix-free pairing function, then mD domi-
nates C.

Proof.

mD(x) =
→

d↑D,r↑R

p(d)2!|r| with R(r | d(r) = x)

↭
→

r

p(u)2!|r| = p(u)mC(x)

This type of result allows us to build a hierarchy over model classes, from
very simple computable classes at the bottom to increasingly complex classes,
requiring larger and larger amounts of computation toward the top.
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three results

• Solomonoff induction also works with prefix TMs and under class-bounds. 

• “Enriching” noise can be iterated to further enrich it 
If we do this carefully, we build towards m(x) 

• Sampling random LSTMs and iterating approximates m(x) in the limit

14
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class-bounded, prefix-free Solomonoff induction
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The top of the hierarchy is the universal distribution m which we get for the
class of all (prefix-free) Turing machines. It is well known that ! logm(x) is
equal (up to a constant) to the prefix-free algorithmic complexity K(x).

The key proposition behind universal pre-training is that we sample from
mC, with C as high up in the hierarchy as we can go,6 and train a model on
such data to approximates mC. Such a model (up to the approximation quality)
would dominate any model in C. If the source of our data is in C, predicting
with mC gives us bounded regret, without ever seeing the data.

4.2 Sequential prediction

In Solomonoff induction—and by extension in [12]—the theoretical framework
is one of monotone Turing machines producing infinite strings, applied to se-
quential prediction: predicting the bits in a string one-by-one, each conditioned
on the last.

In our framework, since we use prefix-free Turing machines, we only model
finite strings, and we primarily describe the probability of the whole string
rather than its individual bits.

In this section, we will show that the frameworks are fundamentally com-
patible in the important properties.

First, for a probability p in ! we write the conditional probability of seeing
a prefix x continue with the bit b as p(b | x). This is defined as

p(b | x) =
p(xb_)
p(x_)

where x_ is the set of all finite strings with the prefix x (which includes x itself).
That is, if we have sampled a string from p and we read it from left to right,
once we have read the bits x, the probability that the next bit is b is given by
p(b | x).

It is not given that if q dominates C, that q(b | x) always dominates pc(b | x).
In practice, pc(b | x) may be much larger for individual strings than q(b | x).
However, we can show that in aggregate, these fluctuations disappear quickly
as strings grow longer.

Let

Dn =
→

|x|=n

p(x_)KL(p(b | x),q(b | x))

= !
→

|x|=n

p(x_)
→

b

p(b | x) log
p(b | x)

q(b | x)
.

6It may be tempting to think that we can sample from the universal distribution, since we can
simply feed the UTM random bits until it produces an output. However, since our patience will
always be bounded (by our lifetime or the lifetime of the universe), we would actually be sampling
from a time-bounded UTM (which corresponds to a class C somewhere in our hierarchy).
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for distributions p and q, defineThat is, if we sample a prefix x of length n from pc(x), Dn is the expected
KL divergence between the distribution that pc assigns to the next bit, and the
distribution that q assigns to the next bit.

We can now show the following.

Theorem 4.2 (Adapted from Theorem 5.2.1 in [24]). If q dominates p, then→↑
n=1 Dn is bounded.

Proof. First, we take the sum up to some value k.
k↓

n=1

Dn = !
↓

n,|x|=n,b

p(x_)p(b | x) log
pc(b | x)

q(b | x)

= !
↓

n,|x|=n,b

pc(x_)
p(xb_)
p(x_)

log
pc(b | x)

q(b | x)

= !
↓

n,|x|=n,b

pc(xb_) log
pc(b | x)

q(b | x)

Now note that if we extend xb with an arbitary suffix y of length m, we get

↓

n

Dn =
↓

n

↓

|x|=n,b,|y|=m

pc(xby_) log
pc(b | x)

q(b | x)

This is because pc(xb_) =
→

|y|=m pc(xby_) and the quantity inside the
logarithm is the same for all xby. Choose the length of y so that n+1+ |y| = k.
Then

k↓

n=1

Dn =
↓

n

↓

|z|=k

p(z_) log
p(zn+1 | z1:n)

q(zn+1 | z1:n)

=
↓

|z|=k

p(z_)
↓

n

log
p(zn+1 | z1:n)

q(zn+1 | z1:n)

=
↓

|z|=k

p(z_) log
↔

n

p(zn+1 | z1:n)

q(zn+1 | z1:n)

=
↓

|z|=k

p(z_) log
p(z_)
q(z_)

Since q dominates pc, the fraction in the logarithm is bounded by a constant
independent of z and n, so that

↓

n

Dn
→
<

↓

|z|=k

pc(z_) ↭ 1

11

<- set of all strings with prefix x

http://peterbloem.nl/publications/up
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enriching noise by iterating random computation

• Use TMs with a (two-way) conditional input tape 

•              : uniform random distribution 
with some prior on string length |x| 

•                        : distribution obtained by: 

• sampling z from 

• sampling c from p(C) 
the class prior 

• sampling x from

16
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TM

x

z

y
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use a random computation to enrich  

some simple noise, then repeat 
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enriching noise by iterating random computation
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i : identity pi(x|x) = 1 

u = u’

m1

m2

m3

m4
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using LSTMs

18

4.4 Approximating universality

We finish up the theoretical part of the paper by showing that we can choose
a practical model class for which mn

C approximates the universal distribution
with n → →.

We will use the class of LSTMs [15]. This is a powerful model class, for
which many theoretical properties are known, and also a very practical model,
for which a great deal of software and hardware support is available, which will
serve us in the experimental section.

Consider a Turing machine with a single work tape T at some point in its
computation. We can represent its configuration by four bit strings (the content
of the input, conditional, work and output tapes) and five natural numbers
(the positions of the heads on each tape plus the state). We can represent
the operation of one step of the Turing machine by a function f : (!)4,ℕ5,→
(!)4,ℕ5.

We can set up an LSTM to compute fi as follows. We define an alphabet
of three symbols: the two bits and a padding symbol. We represent these by
one hot-coding, and concatenate the four tapes into one sequence of vectors,
padding as necessary. We add an additional bit to indicate the position of the
head, bringing the total dimensions to 16. We encode the Turing machine’s state
in the initial value of the hidden vector.8

We add k tokens with the padding symbol for all tapes (as "compute" tokens)
and then read out the output. Since one step of the Turing machine requires a
finite amount of computation, there is some sufficient value of k.

On the output of the LSTM, we again produce 16-dimensional vectors, with
a one-hot encoding per tape. We pass each output through a saturated linear
activation

ω(x) =

↑
↓↔

↓↗

0 if x ↭ 0
1 if x ↫ 1
x otherwise.

We assume that the network which computes f sets the pre-activations so
that four bit strings result with the correct properties.

Since LSTMs are Turing complete—they include Elman RNNs as a special
case, which are Turing complete [32, 7]—there exists for any T an LSTM which
computes this function.9 Next, we would like to show that if we initialize an
LSTM at random from a Gaussian over the parameters, that the probability of
sampling a model which computes this function is not infinitesimal.

Lemma 4.4. Let p(f) be the probability that an LSTM with n parameters, ini-
tialized from a given non-degenerate Gaussian over its parameters computes the

8For TMs with very large numbers of states, this requires a minimum width or level of precision
to represent. Since we need an LSTM only for the function f, we can set the width as necessary for
the chosen precision and number of states in T .

9Note that we only need to compute one step of the TM.
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function f. If there exists one such initialization, then there exists some ω > 0 such
that p(f) > ω

Proof. Let the parameter vector w represent an LSTM which computes f. It
suffices to show that there exists some ball B = Br(w) with radius r such that
all LSTMs in B compute fi as well.

We first focus on the production of the preactivations of the output. This
is done by some matrix and vector y = Woz + b with their elements taken
from w. By assumption, the outputs after activation are in the saturated part of
the linear sigmoid. We can put them strictly inside the saturated part with the
operation y → = 3y!1, or y = 3Woz!1+b. So, by multiplying all elements of
Wo by 3 and subtracting 1 from all elements of b, we have another LSTM w →

whose outputs are strictly inside the saturated part of the output, at least 1 unit
away from the edges.

This means that all pre-activations in the ball B1(y) also result in the correct
output. We can now work backward through the network to establish which
perturbations—expressed as the Euclidean distance between the original and
perturbed output—we can allow for both the parameters of the operation and
the inputs in order that the perturbation on y stays within the ball. For our
purposes, it suffices to show that these perturbations are always nonzero.

The sigmoid and tanh activations are 1/4 and 1 Lipschitz respectively.
For a maximum output perturbation of p we should allow a maximum input
perturbation of 4p and p respectively.

The addition of the bias vector: for a maximum output perturbation of p
we must ensure that the input perturbation and the bias parameter perturbation
do not add up to a vector longer than p, which we can ensure by limiting each
to length p/2.

For any matrix multiplication Wx, apply a perturbation of E to the matrix
and e to the input. The perturbation on the output is

→(W + E)(x+ e)!Wx→ = →We+ Ex+ Ee→
↭ →W→→e→+ →E→→x→+ →E→→e→

where the last line uses the triangle inequality and the submultiplicativity of the
matrix norm. We use the Frobenius norm for matrices and the Euclidean norm
for vectors.

Note that all inputs to all matrix multiplications in the LSTM are bounded
(our input vectors are binary vectors, and the inputs to any matrix multiplication
are passed through a tanh or sigmoid activation). This means that there is an
m such that →x→ < m. We can now restrict the allowed output perturbation10to
p < (m+→W→+1!1 and p < 1 and choose parameter perturbation 0 < →E→ ↭ p
and input perturbation 0 < →e→ ↭ p.

which gives us:

→(W + E)(x+ e)!Wx→ < →W→p+ pm+ p2 < p(m+ →W→+ 1) = p.
10This requires us to lower the allowed output perturbation, but only to another non-zero value.
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We have shown that we can apply non-zero perturbations to every element
of w → while keeping the behavior of the LSTM the same. If we take the smallest
allowed perturbation p encountered and apply it to all dimensions, we see that
all LSTMs in the ball Bp(w →) compute f.

This ball receives a non-infinitesimal probability under any non-degenerate
Gaussian, which proves the lemma.

Now let CLSTM be the class of Turing machines computing a forward pass of
an LSTM. Specifically, for c → CLSTM, c(x,y) computes the forward pass of an
LSTM on the binary input matrix in column-major ordering y on the conditional
tape, ignoring any random bits on the input tape x, producing the output as
described above in column-major ordering.11

We assume that any non-bit outputs of c → CLSTM are rounded to the nearest
bit so that the input and output are always in !.

We assume a normal distribution as initialization, and sufficient floating
point precision to ensure that f is included in CLSTM. With this construction,
we can show that iterating the right model class converges to a universal class.

Let r be a readout function x = r(·,y) which takes a matrix bitstring repre-
sentation y of the four TM tapes (as defined above) and extracts the bits x on
the output tape. Similarly, let s be a setup function x = s(·,y) which takes a
string y and turns it into a four-tape representation with x on the input tape
and all other tapes empty.

Theorem 4.5. Let mn
UTM(x) be the distribution defined by running a universal

Turing machine (UTM) on a random input for n steps, and observing the output
x. If mC dominates CLSTM and r, s → C, then mn+2

C dominates mn
UTM.

Proof.

mn+2
C (x) =

→

c,u0

mn+1
C (u0)p(c)pc(x | u0)

↭
→

u0

mn+1
C (u0)p(r)pr(x | u0)

=
→

u0

p(r)pr(x | u0)
→

c,u1

mn
C(u1)p(c)pc(u0 | u1)

↭
→

u0,u1

p(r)p(f)pr(x | u0)pf(u0 | u1)m
n!1
C (u1)

↭
→

u0...un,un+1

p(r)p(f)np(s)pr(x | u0)

(
n↑

t=1

pf(ut!1 | ut)

)

ps(un,un+1) pu(un+1).

11There are two levels of simulation here: each element of CLSTM is a Turing machine simulating
an LSTM. Some small proportion of these compute f, which simulates a single forward pass of some
chosen Turing machine.
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r, s: simple utility functio
ns

proof idea: find the LSTM that simulates one step of the UTM

http://peterbloem.nl/publications/up
http://peterbloem.nl/publications/up
http://peterbloem.nl/publications/up


/40

in practice
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What has changed since 2014, 2015?
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The basic idea

• Put random noise through a random LSTM 

• iterate n times with different LSTMs 

• Pre-train an autoregressive transformer on this noise 

• Check the zero-shot performance on Wikipedia test (and other data)
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Abstract

We investigate the use of randomly generated data for the sake of pre-
training a model. We justify this approach theoretically from the perspective
of algorithmic complexity, building on recent research that shows that se-
quence models can be trained to approximate Solomonoff induction. We
derive similar, but complementary theoretical results. We show empirically
that synthetically generated data can be used to pre-train a model before the
data is seen. We replicate earlier results that models trained this way show
zero-shot in-context learning across a variety of datasets, and that this per-
formance improves with scale. We extend earlier results to real-world data,
and show that finetuning a model after pre-training offers faster conver-
gence and better generalization.

1 Introduction

Even in the domain of natural language, where vast amounts of data are avail-
able, machine learning is approaching the point where the amount of data on

Z’WY,!X#R_M!IK@JQ!?.>Z\_0&2L%V2G1D4’!
;5;;’6 BUB5CBBBB5Z55BX’X5ZUZZ5P%X555Z5
E$QFGQ.!XQN*Q,.!.,G**GFFFFF^^FPQ^!YQF
\^R5D#**JI,DTTTT,TTTS\TITIDSDT*TTTT\\

Figure 1: ( ) A string of randomly sampled characters. ( ) The
result of passing this string through three randomly initialized neural network
models. The latter data is partly predictable, and so has value for pre-training.
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Figure 2: The results of the main experiment (Section 6.2). We train a trans-
former model on randomly generated data with computational structure, and
test its prediction performance, zero-shot, on six simple datasets every 5000 in-
stances. Horizontal lines indicate the performance of an in-context nth-order
Markov model (optimized over orders 0 – 5). The results show that the zero-
shot behavior (a) is better than chance (8 bits/char) across the board (b) in
some cases beats the performance of a Markov model (c) improves with scale.

which we would like to train a model is larger than the total amount data avail-
able [38]. In many other domains, this point has long been passed. At the same
time, as artificial intelligence becomes more and more integrated in production
systems, producers of, for instance, literature and visual art, are making it in-
creasingly clear that they do not consent to AI models being trained on their
data [25, 29]. In short, the question of whether we can do more with less data
is increasingly urgent.

One approach is to generate synthetic data. This may seem at first to be
a false economy: how can we learn something from a data generator that we
built ourselves? In information theoretic terms, the data processing inequality
[10, Section 2.8] tells us that we cannot increase the information content of a
signal by applying computation to it. This seems to preclude the possibility of
enriching our models with data from any other source than the real world.

However, the key to valuable data is not information content, it’s structure.
The most information-rich signal, a fully random one, is among the least valu-
able data to learn from. A valuable source of data provides a mix of randomness
and structure [4].

Consider the following analogy—from [10, Section 14.6]. A monkey be-
hind a typewriter, bashing keys at random, will famously produce the complete
works of Shakespeare in a large, but finite amount of time. A monkey behind a
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toy toy2

S → S ADV, NP VP, NP VP PREP NP, NP VP (PREP NP), NP VP CON S 
ADV → briefly, quickly, impatiently 
NP → a NOUN, the NOUN, a ADJ NOUN, the ADJ NOUN 
PREP → on, with, to 
CON → while, but, 
NOUN → mouse, bunny, cat, dog, man, woman, person 
VP → walked, walks, ran, runs, goes, went 
ADJ → short, quick, busy, nice, gorgeous 

a gorgeous man walks (with a nice bunny) impatiently

EXP → EXP + AP, EXP - AP, AP    .2, .2, .6 
AP → AP * MP, AP / MP, MP        .2, .2, .6 
MP → GROUP ^ MP, GROUP     .2, .8 
GROUP → VAR, (EXP).               .8, .2 
VAR → x, y, z

x^(x + y) + x * y * z + z ^ (x + x)

Figure 3: The four toy data sources used. Example outputs are shown below
the name in red. (ndfa) A simple hand-designed non-deterministic automa-
ton (drawn in non-standard manner for the sake of simplicity). (aut) A ran-
domly generated non-deterministic automaton. Transition probability are uni-
form. (toy) A hand-designed toy grammar. (toy2) A toy grammar adapted from
[14]. Probabilities in red are over the symbol replacement options (uniform if
not specified).

In addition, we include real-world datasets. Each comes with a valida-
tion/test split.

wp (v/t) The validation and test set of the original Hutter prize Wikipedia data
[17] (also known as enwik8). The data is loaded as a sequence of bytes,
so that some special characters are represented as two tokens.

german (v/t) The text of the public domain book Die Frauenfrage [6], chosen
for containing a relatively large amount of structured text (in the form
of ASCII formatted tables) in addition to natural language. We used the
text-file version from Project Gutenberg, removed the Gutenberg pre- and
post-matter and loaded the text as a sequence of bytes.

code (v/t) The minified javascript code of the D3.js library (version 7.9.0) [5].
Chosen for containing a reasonable amount of code, but (as a javascript
project) being easily available in minified form so that a larger amount of
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Figure 4: The results of the main experiment (Section 6.2) on the validation
datasets.

structure will be contained in the relatively modest context length of our
models. Contains no natural language comments.

linux (v/t) The first 25 megabytes of the linux kernel codebase (commit dd83757f6e)
[9]. Chosen to allow us to test finetuning on a coding dataset of similar
size to the wikipedia data. Contains substantial amounts of natural lan-
guage comments in addition to the C++ code.

We estimate the binary negative log-likelihood of a given model on this data.
The characters are mapped to the tokens of the model by their ASCII code.14 We
sample 10000 slices of length n (the context length) from the data and average
the negative binary log-probability that the model assigns to the character in the
last place of the sequence. Note that we treat the whole data as a single string,
so that delimiters are included (and may end up anywhere in the sampled slice).

6.2 Zero-shot performance and scaling

We train models of increasing size to study scaling behavior. To scale up the
model we first set the width w (also known as dmodel, the dimension of a token
representation going into each transformer block). We then choose the depth–
the number of transformer blocks—L as suggested in [20] by the formula L =
→ lnw!5.039

0.555 ↑. We use maximal update parametrization (MUP) [41] so that we
can tune the hyperparameters at w = 384 and adapt the larger models without
tuning. We scale the width of the LSTM model proportional to the width of the
target model.

We keep the context fixed at 512 for all models15and use w/128 attention
heads. Further architectural and training details are given in the appendix.

14This mapping is arbitrary, since the model has not been trained on this data.
15The limited context length may be responsible for a slight plateauing effect in the scaling, since

larger contexts may be required to scale up prediction with the model. We leave this to future work.
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Figure 5: The results of the finetuning experiment. Colors indicate the dataset
that was finetuned on (wikipedia or linux). Dashed lines show baselines (the
same model, but with the parameters re-initialized). Note that as finetuning
progresses, performance on other data is often largely retained.

We pre-train on approximately 20M instances sampled by the method de-
tailed above. At every 100K instances, we evaluate the model (without any
training) on all downstream datasets.

Figures 2 and 4 show the results on the test and validation sets respectively.
The dotted line shows the performance of a k-th order Markov model, for the
optimal k and Laplace smoothing parameter ω chosen for the data by exhaus-
tive tuning (over orders 0-5 and smoothing values 1, 0.1, 0.01, 0.0001, 10!6).
The Markov model is trained on the same context as the model is given. The
hyperparameters are chosen once per dataset.

The results show that the model improves substantially over a random base-
line (which would score 8 bits per token on all data). It does not outperform
the Markov model on most of the synthetic datasets, but it does do substantially
better on the real-world datasets. This shows promise for the ideal of universal
pre-training in real-world models, while also showing that there are still many
challenges left to overcome.

Among the synthetic datasets, the model does dip slightly below the Markov
boundary for the champ and toy datasets.

In addition, we observe improvement with scale in the real-world datasets.
This suggests a possibility of a scaling law for universal pre-training, which we
discuss further in the last section.
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Figure 6: The results of the ablation experiment (Section 6.4). Starting with
the base experiment for w = 384 (in black, dotted), we try three alternative
source of structured random data: a transformer model, a random determin-
istic automaton (ndfa), and a random distribution on the character space, iid
over the time dimension (pointwise). In addition, we try our LTSM source
without buffer (lstm-nobuf) and without iterating the model to increase the
depth of the structure present (lstm-noit)..

pointwise For each instance, we sample a categorical distribution over the to-
kens from a Dirichlet prior with ω = 1

2 . We then sample each token inde-
pendently from this distribution.

ndfa A randomly generated non-deterministic automaton.

transformer We sample from a transformer model in the same way we sample
from the LSTMs. While this creates a pleasing architectural symmetry
between the source and target model, the transformer relies on learned
embeddings for its sequential bias, which makes it very unlikely that this
bias emerges by random sampling.

In addition, we ablate the buffering mechanism (lstm-nobuf) by making the
buffer the same size as the batch size, and the iteration of generated data back
into the lstm (lstm-noit), by resetting the sampled batch to half constant/half
uniform noise before feeding it to the LSTM.

Finally, we test on the explicit resource-bounded UTM used in [12] as a
source. We scale the resource bounds (on memory, program length, and time)
up by factors of 10, 50, 250. At 50, the UTM takes slightly less time per sample
than the LSTM and at 250 slightly more.

It may be that a large reason for the difference in preformance between
the LSTM and the UTM is down to the fact that the LSTM can be accelerated
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Figure 2: The results of the main experiment (Section 6.2). We train a trans-
former model on randomly generated data with computational structure, and
test its prediction performance, zero-shot, on six simple datasets every 5000 in-
stances. Horizontal lines indicate the performance of an in-context nth-order
Markov model (optimized over orders 0 – 5). The results show that the zero-
shot behavior (a) is better than chance (8 bits/char) across the board (b) in
some cases beats the performance of a Markov model (c) improves with scale.

which we would like to train a model is larger than the total amount data avail-
able [38]. In many other domains, this point has long been passed. At the same
time, as artificial intelligence becomes more and more integrated in production
systems, producers of, for instance, literature and visual art, are making it in-
creasingly clear that they do not consent to AI models being trained on their
data [25, 29]. In short, the question of whether we can do more with less data
is increasingly urgent.

One approach is to generate synthetic data. This may seem at first to be
a false economy: how can we learn something from a data generator that we
built ourselves? In information theoretic terms, the data processing inequality
[10, Section 2.8] tells us that we cannot increase the information content of a
signal by applying computation to it. This seems to preclude the possibility of
enriching our models with data from any other source than the real world.

However, the key to valuable data is not information content, it’s structure.
The most information-rich signal, a fully random one, is among the least valu-
able data to learn from. A valuable source of data provides a mix of randomness
and structure [4].

Consider the following analogy—from [10, Section 14.6]. A monkey be-
hind a typewriter, bashing keys at random, will famously produce the complete
works of Shakespeare in a large, but finite amount of time. A monkey behind a

2

Limitations

• Bias in source model: how universal is it really? 

• Poor performance in some simple tasks 

• Mix the UTM with the LSTMs?
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Future work?

• Identify high-value data (computational depth) 

• Generate challenging structured noise for the 
current model. 

• Edge-of-chaos models 

• Curriculum learning. Build up to high structure. 

• Are transformers the right learner?
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32 tokens 256 tokens 256 tokens

!=0.0
!=0.0 !=0.05

128 tokens

!=0.0
!=0 ~ lossless compression attempts w/ full input tokens.

!>0 ~ optimizing "#$ minimization while trying %1 <= !. 

Green: +ve results where either "1 <= #+0.01 or $%& = all #tokens. 

Only failure occurs for large # for OOD chessboard.

Input

Figure 6: Estimating K̂C across structured, noisy, and OOD inputs. Recon. quality and K̂C vary

by image type and token count. The dog (IID) compresses well; the OOD chessboard does not. High

Noise and high structure both yield high K̂C (like theoretical KC), but adaptive tokenizers can distin-

guish: for noise, increasing tokens doesn’t improve ω1 i.e. ! = ω1(256 tokens)→ ω1(32 tokens) ↑ 0.

For redundant chessboard structure, ! turns to be too high – meaning what’s actually interesting lies

in the mid ! range – suggesting potential to model AIT notions like Sophistication, Logical Depth.

Table on the right shows how well KARL minimizes K̂C under the constraint ω1 ↓ ε for diff. input ε.

minimum program size), while masking out the rest. The use of loss-conditioning with variable

reconstruction thresholds can also be interpreted as prompting the model with alternative tasks, since

different downstream applications in computer vision require different levels of detail to be preserved.

KARL produces variably compressed representations based on the target loss magnitude—allocating

more tokens for harder tasks—aligning with the spirit of Universal Intelligence framework [4].

How do we train KARL? We start by outlining the core encoder-decoder architecture used for

adaptive tokenization, which maps images to 1D latent tokens. Building on this, we introduce our

loss-conditioned tokenization strategy, which enables training of the proposed tokenizer that learns to

approximate the minimal tokens necessary to satisfy a given reconstruction threshold.

1D Tokenization: Like most recent adaptive tokenizers and inspired by the Perceiver model [24],

KARL learns to distill an input image into 1D latent tokens that are not constrained to fixed spatial

patches. We first map the image to a grid of 2D latent tokens using a pretrained VAE / VQGAN,

resulting in 256 tokens for a 256 ↔ 256 image. These 2D tokens are concatenated with a set of

initialized 1D latent tokens along the token dimension and passed to a latent distillation encoder—a

transformer-based encoder that performs full self-attention across all tokens. The goal of the encoder

is to distill the 2D image tokens into a variable-length 1D representation. For reconstruction, a

decoder with the same architecture performs cross-attention between the masked 2D token grid

(representing positional structure of the original 2D image tokens) and the encoded 1D latent tokens,

allowing the model to reconstruct the image via predicted 2D tokens and VQGAN or VAE decoder.

With the goal of training a one-shot adaptive tokenizer, the encoder is tasked with not only predicting

the embedding of each 1D token, but also estimating a halting probability for each token. If a token’s

halting probability exceeds a given threshold, it is considered inactive—excluded from decoding—and

thus does not contribute to the shortest program of the image. However, we do not have direct

supervision for these halting probabilities. Furthermore, learning when to halt or mask using only a

reconstruction objective is non-trivial: masking is non-differentiable, and common techniques like

reinforcement learning or straight-through estimation [30] are highly unstable, especially alongside

latent quantization [14]. How do we train the model to mask out tokens, enabling one-shot prediction

of sufficient token count? We address this by framing the problem as an upside-down RL formulation

[22] and introducing a loss-conditioned training strategy inspired by the principles of Kolmogorov

Complexity [5], as defined below.

6

Single-pass Adaptive Image Tokenization for 
Minimum Program Search, Duggal et al 2025
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outlook

29

Universal pre-training offers a data/compute tradeoff.
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