
Are Names Meaningful?
Quantifying Social Meaning on the Semantic

Web

Steven de Rooij, Wouter Beek, Peter Bloem, Frank van Harmelen, and Stefan
Schlobach

{s.rooij,w.g.j.beek,p.bloem,frank.van.harmelen,k.s.schlobach}@vu.nl

Dept. of Computer Science, VU University Amsterdam, NL

Abstract. According to its model-theoretic semantics, Semantic Web
IRIs are individual constants or predicate letters whose names are cho-
sen arbitrarily and carry no formal meaning. At the same time it is
a well-known aspect of Semantic Web pragmatics that IRIs are often
constructed mnemonically, in order to be meaningful to a human in-
terpreter. The latter has traditionally been termed ‘social meaning’, a
concept that has been discussed but not yet quantitatively studied by
the Semantic Web community. In this paper we use measures of mu-
tual information content and methods from statistical model learning to
quantify the meaning that is (at least) encoded in Semantic Web names.
We implement the approach and evaluate it over hundreds of thousands
of datasets in order to illustrate its efficacy. Our experiments confirm
that many Semantic Web names are indeed meaningful and, more inter-
estingly, we provide a quantitative lower bound on how much meaning is
encoded in names on a per-dataset basis. To our knowledge, this is the
first paper about the interaction between social and formal meaning, as
well as the first paper that uses statistical model learning as a method to
quantify meaning in the Semantic Web context. These insights are useful
for the design of a new generation of Semantic Web tools that take such
social meaning into account.

1 Introduction

The Semantic Web constitutes the largest logical database in history. Today it
consists of at least tens of billions of atomic ground facts formatted in its basic
assertion language RDF. While the meaning of Semantic Web statements is for-
mally specified in community Web standards, there are other aspects of meaning
that go beyond the Semantic Web’s model-theoretic or formal meaning [12].

Model theory states that the particular IRI chosen to identify a resource has
no semantic interpretation and can be viewed as a black box: “urirefs are treated
as logical constants.”1 However, in practice IRIs are not chosen randomly, and
similarities between IRIs are often used to facilitate various tasks on RDF data,

1 See https://www.w3.org/TR/2002/WD-rdf-mt-20020429/#urisandlit



with ontology alignment being the most notable, but certainly not the only one.
Our aim is to evaluate (a lower bound on) the amount of information the IRIs
carry about the structure of the RDF graph.

A simple example: Taking RDF graphs G (Listing 1.1) and H (Listing 1.2)
as an example, it is easy to see that these graphs are structurally isomorphic
up to renaming of their IRIs. This implies that, under the assumption that IRIs
refer to objects in the world and to concepts, graphs G and H denote the same
models.2

Listing 1.1. Serialization of graph G.

abox : item1024 rd f : type tbox : Tent .
abox : item1024 tbox : soldAt abox : shop72 .
abox : shop72 rd f : type tbox : Store .

Listing 1.2. Serialization of graph H.

fy : ju fn1024 pe : ko9sap fyu fn t : Ufou .
fy : ju fn1024 fyu fn t : tmf fqt fy : aHup .
fy : aHup pe : ko9sap fyu fn t :70342 .

Even though graphs G and H have the same formal meaning, an intelligent agent
– be it human or not – may be able to glean more information from one graph
than from the other. For instance, even a human agent that is unaware of RDF
semantics may be inclined to think that the object described in graph G is a tent
that is sold in a shop. Whether or not the constant symbols abox:item1024 and
fy:jufn1024 denote a tent is something that cannot be glanced from the formal
meaning of either graph. In this sense, graph G may be said to purposefully
mislead a human agent in case it is not about a tent sold in a shop but about
a dinosaur trodding through a shallow lake. Traditionally, this additional non-
formal meaning has been called social meaning [11].

While social meaning is a multifarious notion, this paper will only be con-
cerned with a specific aspect of it: naming. Naming is the practice of employing
sequences of symbols to denote concepts. Examples of names in model theory are
individual constants that denote objects and predicate letters that denote rela-
tions. The claim we want to substantiate in this paper is that in most cases names
on the Semantic Web are meaningful. This claim cannot be proven by using the
traditional model-theoretic approach, according to which constant symbols and
predicate letters are arbitrarily chosen. Although this claim is widely recognized
among Semantic Web practitioners, and can be verified after a first glance at
pretty much any Semantic Web dataset, there have until now been no attempts
to quantify the amount of social meaning that is captured by current naming

2 Notice that the official semantics of RDF [13] is defined in terms of a Herbrand
Universe, i.e., the IRI dbr:London does not refer to the city of London but to the
syntactic term dbr:London. Under the official semantics graphs G and H are there-
fore not isomorphic and they do not denote the same models. The authors believe
that RDF names refer to objects and concepts in the real world and not (solely) to
syntactic constructs in a Herbrand Universe.



practices. We will use mutual information content as our quantitative measure
of meaning, and will use statistical model learning as our approach to determine
this measure across a large collection of datasets of varying size.

In this paper we make the following contributions:

1. We prove that Semantic Web names are meaningful.
2. We quantify how much meaning is (at least) contained in names on a per-

dataset level.
3. We provide a method that scales comfortably to datasets with hundreds of

thousands of statements.
4. The resulting approach is implemented and evaluated on a large number of

real-world datasets. These experiments do indeed reveal substantial amounts
of social meaning being encoded in IRIs.

To our knowledge, this is the first paper about the interaction between social and
formal meaning, as well as the first paper that uses statistical model learning as
a method to quantify meaning in the Semantic Web context. These insights are
useful for the design of a new generation of Semantic Web tools that take such
social meaning into account.

2 Method

RDF graphs & RDF names An RDF graph G is a set of atomic ground
expressions of the form p(s, o) called triples and often written as 〈s, p, o〉, where
s, p and o are called the subject, predicate and object term respectively. Object
terms o are either IRIs or RDF literals, while subject and predicate terms are
always IRIs. In this paper we are specifically concerned with the social meaning
of RDF names that occur in the subject position of RDF statements. This implies
that we will not consider unnamed or blank nodes, nor RDF literals which only
appear in the object position of RDF statements [5].

IRI meaning proxies What IRIs on the Semantic Web mean is still an open
question, and in [11] multiple meaning theories are applied to IRI names. How-
ever, none of these different theories of meaning depend on the IRI trees, neither
their structure nor their string-labels. Thus, whatever theory of IRIs is discussed
in the literature, it is always independent of the string (the name) that makes
up the IRI. The goal of this paper is to determine if there are some forms of
meaning for an IRI that correlate with the choice of their name (as defined by
the IRI trees above).

For this purpose, we will use the same two “proxies” for the meaning of an
IRI that were used in [10]. The first proxy for the meaning of an IRI s the type-set
of x: the set of classes Y C(x) to which an IRI x belongs. The second proxy for
the meaning of an IRI x is the property-set of x: the set of properties Y P (x) that
are applied to IRI x. Using the standard intension (Int) and extension (Ext)



functions for RDF semantics [13] we define these proxies in the following way:

Type-set: Y C(x) := {c | 〈Int(x), Int(c)〉 ∈ Ext(Int(rdf:type))}
Property-set: Y P (x) := {p | ∃o. 〈Int(x), Int(o)〉 ∈ Ext(Int(p))}

Notice that every subject term has a non-empty property-set (every subject term
must appear in at least one triple) but some subject terms may have an empty
type-set (in case they do not appear as the subject of a triple with the rdf:type

predicate). We will simply use Y in places where both Y C and Y P apply. Since
we are interested in relating names to their meanings we will use X to denote
an arbitrary IRI name and will write 〈X,Y 〉 for a pair consisting of an arbitrary
IRI name and either of its meaning proxies.

Mutual information Two random variables X and Y are independent iff
P (X,Y ) = P (X) · P (Y ) for all possible values of X and Y . Mutual information
I(X;Y ) is a measure of the dependence between X and Y , in other words a mea-
sure of the discrepancy between the joint distribution P (X,Y ) and the product
distribution P (X) · P (Y ):

I(X;Y ) = E[logP (X,Y )− logP (X) · P (Y )],

where E is the expectation under P (X,Y ). In particular, there is no mutual
information between X and Y (i.e. I(X;Y ) = 0) when X and Y are independent,
in which case the value of X carries no information about the value of Y or vice
versa.

Information and codes While the whole paper can be read strictly in terms of
probability distributions, it may be instructive to take an information theoretical
perspective, since information theory inspired many of the techniques we use.
Very briefly: it can be shown that for any probability distribution P (X), there
exists a prefix-free encoding of the values of X such that the codeword for a
value x has length − logP (x) bits (all logarithms in this paper are base-2).
“Prefix-free means” that no codeword is the prefix of another, and we allow non-
integer codelengths for convenience. The inverse is also true: for every prefix free
encoding (or “code”) for the values of X, there exists a probability distribution
P (X), so that if element x is encoded in L(x) bits, it has probability P (x) =
2−L(x) [4, Theorem 5.2.1].

Mutual information can thus be understood as the expected number of bits
we waste if we encode an element drawn from P (X,Y ) with the code corre-
sponding to P (X)P (Y ), instead of the optimal choice, the code corresponding
to P (X,Y ).

Problem statement and approach

We can now define the central question of this paper more precisely. Let o be an
IRI. Let n(o), c(o) and p(o) be its name (a Unicode string), its type-set and its



predicate-set respectively. Let O be a random element so that P(O) is a uniform
distribution over all IRIs in the domain. Let X = n(O), Y C = c(O) and Y P (O).
As explained, we use Y C and Y P as meaning proxies, if the value of X can
be reliably used to predict the value of Y C or Y P , then we take X to contain
information about its meaning. The treatment is the same for both proxies so
we will use Y as a symbol for a meaning proxy in general to report results for
both.

We take the IRIs from an RDF dataset and consider them to be a sequence
of randomly chosen IRIs from the dataset’s domain with names X1:n and corre-
sponding meanings Y1:n. Our method can now be stated as follows:

If we can show that there is significant mutual information between the
name X of an IRI and its meaning Y , then we have shown that the IRIs
in this domain carry information about their meaning.

This implies a best-effort principle: if we can predict the value of Y from the value
of X we have shown that X carries meaning. However, if we did not manage this
prediction, there may yet be smarter methods to do so and we have not proved
anything. For instance, an IRI that seems to be a randomly generated string
could always be an encrypted version of a meaningful one. Only by cracking the
encryption could we prove the connection. Thus, we can prove conclusively that
IRIs carry meaning, but not prove conclusively that they do not.

Of course, even randomly generated IRIs might, through chance, provide
some information about their meaning. We use a hypothesis test to quantify the
amount of evidence we have. We begin with the following null hypothesis:

H0: There is no mutual information between the IRIs X1:n and their
meanings Y1:n.

There are two issues when calculating the mutual information between names
and meaning proxies for real-world data:

1. Computational cost: The straightforward method for testing indepen-
dence between random variables is the use of a χ2-test. Unfortunately, this
results in a computational complexity that is impractical for all but the
smallest datasets.

2. Data sparsity: For many names there are too few occurrences in the data
in order for a statistical model to be able to learn its meaning proxies. In
these cases we must learn predict the meaning from attributes shared by
different IRIs with the same meaning (clustering “similar” IRIs together).

To reduce computational costs, we develop a less straightforward likelihood ra-
tio test that does have acceptable computational properties. To combat data-
sparsity, we exploit the hierarchical nature of IRIs to group together IRIs that
share initial segments. Where we do not have sufficient occurrences of the full
IRI to make a useful prediction, we can look at other IRIs that share some prefix,
and make a prediction based on that.



Hypothesis testing

The approach we will use is a basic statistical hypothesis test: we formulate a
null hypothesis (that the IRIs and their meanings have no mutual information)
and then show that under the null hypothesis, the structure we observed in the
data is very unlikely.

Let X1:n, Y1:n denote the data of interest and let P0 denote the true distri-
bution of the data under the null hypothesis that X and Y are independent:

P0(Y1:n|X1:n) = P0(Y1:n).

We will develop a likelihood ratio test to disprove the null hypothesis. The
likelihood ratio Λ is the ratio between the probability of the data if the null
hypothesis is true, divided by the probability of the data under an alternative
model P1, which in this case attempts to exploit any dependencies between
names and semantics of terms. We are free to design the alternative model as
we like: the better our efforts, the more likely we are to disprove P0, if it can be
disproven. We can never be sure that we will capture all possible ways in which
a meaning can be predicted from its proxy, but, as we will see in Section 4, a
relatively straightforward approach suffices for most datasets.

Likelihood ratio The likelihood ratio Λ is a test statistic contrasting the prob-
ability of the data under P0 to the probability under an alternative model P1:

Λ =
P0(Y1:n|X1:n)

P1(Y1:n|X1:n)
=

P0(Y1:n)

P1(Y1:n|X1:n)

If the data is sampled from P0 (as the null hypothesis states) it is extremely
improbable that this alternative model will give much higher probability to the
data than P0. Specifically:

P0(Λ ≤ λ) ≤ λ (1)

This inequality gives us a conservative hypothesis test: it may underestimate
the statistical significance, but it will never overestimate it. For instance, if we
observe data such that Λ ≥ 0.01, the probability of this event under the null
hypothesis is less than 0.01 and we can reject H0 with significance level 0.01. The
true significance level may be even lower, but to show that, a more expensive
method may be required. To provide an intuition for what (1) means, we can
take an information theoretic perspective. We rewrite:

P0(− logΛ ≥ k) ≤ 2−k with k = − log λ

− logΛ = (− logP0(Y1:n | X1:n))− (− logP1(Y1:n | X1:n))

That is, if we observe a likelihood ratio of Λ, we know that the code corresponding
to P1 is − logΛ bits more efficient than P0. Under P0, the probability of this
event is less than 2−k (i.e. less than one in a billion for as few as 30 bits). Both
codes are provided with X1:n, but the first ignores this information while the



second attempts to exploit it to encode Y1:n more efficiently. Finally, note that
H0 does not actually specify P0, only that it is independent of X1:n, so that we
cannot actually compute Λ. We solve this by using

P̂ (Y = y) =
|{i |Yi = y}|

n

in place of P0. P̂ is guaranteed to upper-bound any P0 (note that it “cheats” by
using information from the dataset).3This means that by replacing the unknown
P0 with P̂ we increase Λ, making the hypothesis test more conservative.

3 The Alternative Model

As described in the previous section, we must design an alternative model that
gives higher probability to datasets where there is mutual information between
IRIs and their meanings.4 Any alternative model yields a valid test, but the
better our design, the more likely it is we will be to be able reject the null-
hypothesis, and the more strongly we will be able to reject it.

As discussed in the previous section, for many IRIs, we may only have one
occurrence. From a single occurrence of an IRI we cannot make any meaningful
predictions about its predicate-set, or its type-set. To make meaningful predic-
tions, we cluster IRIs together. We exploit the hierarchical nature of IRIs by
storing them together in a prefix-tree (also known as a trie). This is a tree with
labeled edges where the root node represents the empty string and each leaf
node represents exactly one IRI. The tree branches at every internal node into
subtrees that represent (at least) two distinct IRIs that have a common prefix.
The edge labels are chosen so that their concatenation along a path starting at
the root node and ending in some node n always results in the common prefix of
the IRIs that are reachable from n. In other words: leaf nodes represent full IRIs
and non-leaf nodes represent IRI prefixes. Since one IRI may be a strict prefix
of another IRI, some non-leaf nodes may represent full IRIs as well.

For each IRI in the prefix tree, we choose a node to represent it: instead of
using the full IRI, we represent the IRI by the prefix corresponding to the node,
and use the set of all IRIs sharing that prefix to predict the meaning. Thus, we
are faced with a trade-off: if we choose a node too far down, we will have too few
examples to make a good prediction. If we choose a node too far up, the prefix
will not contain any information about the meaning of the IRI we are currently
dealing with.

Once the tree has been constructed we will make the choice once for all IRIs
by constructing a boundary. A boundary B is a set of tree nodes such that every
path from the root node to a leaf node contains exactly one node in B. Once the

3 A detailed proof for this, and for (1) is shared as an external resource at
http://wouterbeek.github.io/iswc2016_appendix.pdf

4 Or, equivalently, we must design a code which exploits the information that IRIs
carry about their meaning to store the dataset efficiently.



boundary has been selected we can use it to map each IRI X to a node nX in
B. Multiple IRIs can be mapped onto the same boundary node. Let XB denote
the node in the prefix tree for IRI X and boundary B. We use B to denote the
set of all boundaries for a given IRI tree.

For now, we will take the boundary as a given, a parameter of the model.
Once we have described our model P1(Y1:n | X1:n, B) with B as a parameter, we
will describe how to deal with this choice.

We can now describe our model P1. The most natural way to describe it, is
as a sampling process. Note that we do not actually implement this process, it is
simply a construction. We only compute the probability P1(Y1:n | X1:n, B) that
a given set of meanings emerges from this process. Since we will use an IRI’s
boundary node boundary in place of the full IRI, we can rewrite

P1(Y1:n | X1:n, B) = P1(Y1:n | XB
1:n).

When viewed as a sampling process, the task of P1 is to label a given sequence
of IRIs with randomly chosen meanings. Note that when we view P0 this way,
it will label the IRIs independently of any information about the IRI, since
P0(Y1:n | X1:n) = P0(Y1:n). For P1 to assign datasets with meaningful IRIs
a higher probability than P0, P1 must assign the same meaning to the same
boundary node more often than it would by chance.

We will use a Pitman-Yor process [16] as the basic structure of P1.
We assign meanings to the nodes XB

i in order. At each node, we decide
whether to sample its meaning from the global set of possible meanings Y or
from the meanings that we have previously assigned to this node.

Let Yi be the set of meanings that have previously been assigned to node
XB

i : Yi = {yj | j ≤ i ∧XB
j = XB

i+1}.
With probability (|Yi|+1)/2

i+ 1
2

, we choose a meaning for XB
i that has not been

assigned to it before (i.e. y ∈ Y−Yi). We then choose meaning y with probability
|{j≤i:Yj=y}|+ 1

2

i+|Y| 12
5. Note that both probabilities have a self-reinforcing effect: every

time we choose to sample a new meaning, we are more likely to do so in the
future, and every time this results in a particular meaning y, we are more likely
to choose y in the future.

If we do not choose to sample a new meaning, we draw y from the set of
meanings previously assigned to XB

i . Specifically:

P (Yi = y | XB
i ) =

|{j ≤ i | XB
j = XB

i+1, Yj = y}| − 1
2

i+ 1
2

.

Note that, again, the meanings that have been assigned often in the past are
assigned more often in the future. These “the rich-get richer”-effects mean that
the Pitman-Yor process tends to produce power-law distributions.

5 The Pitman-Yor process itself does not specify which new meaning we should choose,
only that a new meaning should be chosen. This distribution on meanings in Y is
inspired by the Dirichlet-Multinomial model.



Note that this sampling process makes no attempt to map the “correct”
meanings to IRIs: it simply assigns random ones. It is unlikely to produce a
dataset that actually looks natural us. Nevertheless, a natural dataset with mu-
tual information between IRIs and meanings still has a much higher probability
under P1 than under P0, which is all we need to reject the null hypothesis.

While it may seem from this construction that the order in which we choose
meanings has a strong influence on the probability of the sequence, it can in fact
be shown that every permutation of any particular sequence of meanings has the
same probability (the model is exchangeable). This is a desirable property, since
the order in which IRIs occur in a dataset is usually not meaningful.

To compute the probability of Y1:n for a given set of nodes X1:n we use

P1(Y1:n | XB
1:n) =

n−1∏
i=0

P1(Yi+1 | Y1:i, XB
1:n) with

P1(Yi+1 = y | Y1:i, XB
1:n)

=


(|Yi|+ 1) 1

2

i+ 1
2

·
|{j ≤ i : Yj = y}|+ 1

2

i+ |Y| 12
if y 6∈ Yi,

|{1 ≤ j ≤ i | XB
j = XB

i+1, Yj = y}| − 1
2

i+ 1
2

otherwise.

Choosing the IRI boundary We did not yet specify which boundary results
in clusters that are of the right size, i.e., which boundary choice of boundary
gives us the highest probability for the data under P1, and thus the best chance
of rejecting the null hypothesis.

Unfortunately, which boundary B is best for predicting the meanings Y can-
not be determined a priori. To get from P1(Y | X,B) to P1(Y | X), i.e. to get
rid of the boundary parameter, we take a Bayesian approach: we define a prior
distribution W (B) on all boundaries, and compute the marginal distribution on
Y1:n:

P1(Y1:n | X1:n) =
∑
B∈B

W (B)P1(Y1:n | X1:n, B) (2)

This is our complete alternative model.
To define W (B), remember that a boundary consists of IRI prefixes that are

nodes in an IRI tree (see above). Let lcp(x1, x2) denote the longest common
prefix of the IRIs denoted by tree nodes x1 and x2. We then define the following
distribution on boundaries:

W (B) := 2−|{lcp(x1,x2) | x1,x2∈B}|

Here, the set of prefixes in the exponent corresponds to the nodes that are
in between the root and some boundary node, including the boundary nodes
themselves. Therefore, the size of this set is equal to the number of nodes in
the boundary plus all internal nodes that are closer to the root. Each such node
divides the probability in half, which means that W can be interpreted as the



following generative process: starting from the root, a coin is flipped to decide for
each node whether it is included in the boundary (in which case its descendants
are not) or not included in the boundary (in which case we need to recursively
flip coins to decide whether its children are).

The number of possible boundaries B is often very large, in which case com-
puting 2 takes a long time. We therefore use a heuristic (Algorithm 1) to lower-
bound (2), by using only those terms that contribute the most to the total.
Starting with the single-node boundary containing only the root node, we recur-
sively expand the boundary. We compute P1 for all possible expansion of each
boundary we encountered, but we recurse only for the one which provides the
largest contribution.

Note that this only weakens the alternative model: the probability under the
heuristic version of P1 is always lower than it would be under the full version,
so that the resulting hypothesis tests results in a higher p-value. In short, this
approximation may result in fewer rejections of the null hypothesis, but when we
do reject it, we know that we would also have rejected it if we had computed P1

over all possible boundaries. If we cannot reject, there may be other alternative
models that would lead to a rejection, but that is true for the complete P1 in (2)
as well. Algorithm 1 calculates the probability of the data under the alternative
model, requiring only a single pass over the data for every boundary that is
tested.

Algorithm 1 Heuristic calculation for the IRI boundary.

1: procedure MarginalProbability(X1:n, Y1:n, IRI tree with root r)
2: B ← {r} . The boundary in the sum in (2)
3: Q← {r} . Queue of boundary states to be expanded
4: best term←W (B)P1(Y1:n | X1:n, B) . Largest term found
5: acc← best term . Accumulated probability
6: while Q 6= ∅ do
7: n← shift(Q)
8: B′ ← B \ {n} ∪ children(n)
9: term←W (B)P1(Y1:n | X1:n, B

′)
10: acc← acc + term
11: if term ≥ best term then
12: (B, best term)← (B′, term)
13: add(Q, children(n))

return acc . Approx. P1(Y1:n | X1:n) from below

4 Evaluation

In the previous section we have developed a likelihood ratio test which allows
us to verify the null hypothesis that names are statistically independent from
the two meaning proxies. Moreover, the alternative model P1, provides a way of



quantifying how much meaning is (at least) shared between IRI names X and
meaning proxies Y .

Since we calculate P1 on a per-dataset basis our evaluation needs to scale
in terms of the number of datasets. This is particularly important since we are
dealing with Semantic Web data, whose open data model results in a very hetero-
geneous collection of real-world datasets. For example, results that are obtained
over a relatively simple taxonomy may not translate to a more complicated on-
tology. Moreover, since we want to show that our approach and its corresponding
implementation scale, the datasets have to be of varying size and some of them
have to be relatively big.

For this experiment we use the LOD Laundromat data collection [1], a snap-
shot of the LOD Cloud that is collected by the LOD Laundromat scraping, clean-
ing and republishing framework. LOD datasets are scraped from open data por-
tals like Datahub6 and are automatically cleaned and converted to a standards-
compliant format. The data cleaning process includes removing ‘stains’ from the
data such as syntax errors, duplicate statements, blank nodes and more.

We processed 544, 504 datasets from the LOD Laundromat data collection,
ranging from 1 to 129, 870 triples. For all datasets we calculate the Λ-value for
the two meaning proxies Y C and Y P , noting that if Λ < α, then p < α also, and
we can reject the null-hypothesis with significance level at least α. We choose
α = 0.01 for all experiments.

Figure 1 shows the frequency with which the null hypothesis was rejected for
datasets in different size ranges.
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Fig. 1. The fraction of datasets for which we obtain a significant result at significance
level α = 0.01. Note that we group the datasets in logarithmic bins (i.e., the bin
edges {ei} are chosen so that the values {log ei} are linearly spaced. As explained in
Section 2, all datasets have predicate-sets but not all datasets have type-sets. The
fraction of datasets with no type-set is marked in gray.

6 See http://datahub.io



The figure shows that for datasets with at least hundreds of statements our
method is usually able to reliably refute the null hypothesis at a very strong
significance level of α = 0.01. 6, 351 datasets had no instance/class-assertions
(i.e., rdf:type-statements) whatsoever (shown in gray in Figure 1). For these
datasets it was therefore not possible to obtain results for Y C .

Note that we may not conclude that no datasets with less than 100 statements
contain meaningful IRIs. We had too little data to show meaning in the IRIs
with our method, but other, more expensive methods may yet be successful.

In Figure 2 we explore the correlation between the results for type-sets Y C

and property-sets Y P . As it turns out, in cases where we do find evidence for
social meaning the evidence is often overwhelming, with a pΛ-value exponentially
small in terms of the number of statements. It is therefore instructive to consider
not the Λ-value itself but its binary logarithm. A further reason for studying logΛ
is that − logΛ can be seen not only as a measure of evidence against the null
hypothesis that Y and X are independent, but also as a conservative estimate of
the mutual information I(X:Y ): predicting the meanings from the IRIs instead
of assuming independence allows us to encode the data more efficiently by at
least − logΛ bits.

In Figure 2, the two axes correspond to the two meaning proxies, with Y P

on the horizontal and Y C on the vertical axis. To show the astronomical level
of significance achieved for some datasets, we have indicated several significance
thresholds with dotted lines in the figure. The figure shows results for 544, 504
datasets7 and as Figure 2 shows, the overwhelming majority of these indicate
very strong support for the encoding of meaning in IRIs, measured both via
mutual information content with type-sets and with property-sets. Recall that
− logΛ is a lower bound for the amount of information the IRIs contain about
their meaning. For datasets that appear to the top-left of the diagonal property-
sets Y P provide more evidence than type-sets Y C . For points to the bottom-right
of the diagonal, type-sets Y C provide more evidence than property-sets Y P .

Only very few datasets appear in the upper-right quadrant. Manual inspec-
tion has shown that these are indeed datasets that use ‘meaningless’ IRIs. There
are some datasets where the logΛ for property-sets is substantially higher than
zero; this probably occurs when there are very many property-sets so that the
alternative model has many parameters to fit, whereas the null model is a max-
imum likelihood estimate so it does not have to pay for parameter information.

Datasets that cluster around the diagonal are ones that yield comparable
results for Y C and Y P . There is also a substantial grouping around the horizontal
axis: these are the datasets with poor rdf:type specifications. There is some
additional clustering visible, reflecting that there is structure not only within
individual Semantic Web datasets but also between them. This may be due to a

7 Datasets with fewer than 1, 000 statements are not included in order to get a clear
picture of what happens in case we have sufficient data to refute the null, as indicated
by our observations from Figure 1. A zoomed out version of Figure 2, scaling to log(p)
values of −300, 000 is available at https://goo.gl/r3uxpA, but is not included in
this paper because its scale is no longer suitable for print.



Fig. 2. This figure shows logΛ for both meaning proxies, for each dataset. Datasets
that appear below a horizontal line provide sufficient evidence (at that α) to refute the
claim that Semantic Web names do not encode type-sets Y C . Datasets that appear
to the left of a vertical line provide sufficient evidence (at that α) to refute the claim
that Semantic Web names do not encode property-sets Y P . Datasets containing no
instance/class- or rdf:type-relations are not included.

single data creator releasing multiple datasets that share a common structure.
These structures may be investigated further in future research.

The results reported on until now have been about the amount of evidence
against the null hypothesis. In our final figure we report about the amount of
information that is encoded in Semantic Web names. For this we ask ourselves
the information theoretic question: how many bits of the schema information
in Y can be compressed by taking into account the name X? Again we make
a conservative estimate: the average number of bits required to describe Y is
underestimated by the empirical entropy, whereas the average number of bits we
need to encode Y with our alternative model, given by − log(P1(Y1:n|X1:n)/n,
is an overestimate (because P1 is an ad-hoc model rather than the true distri-
bution). Again, we only consider datasets with more than 1, 000 statements.

The results in Figure 3 show that for many datasets more than half of the
information in Y , and sometimes almost all of it, can in fact be predicted by



Fig. 3. Measuring the amount of information that is encoded in Semantic Web names.
The horizontal axis shows the entropy of the empirical distribution of Y for a given
dataset, a lower-bound for the information contained in the meaning of the average
IRI. The vertical axis shows the number of bits used to encode the average meaning by
the code corresponding to P1. This is an upper bound, since P1 may not be the optimal
model. Datasets containing no type relations are not included in the right-hand figure.

looking at the IRI. On the other hand, for datasets of high entropy the alternative
model P1 tends not to compress a lot. Pending further investigation, it is unclear
whether this later result is due to inefficiency in the alternative model or because
the IRIs in those datasets are just less informative.

5 Related work

Statistical observations Little is known about the information theoretic prop-
erties of real-world RDF data. Structural properties of RDF data have been
observed to follow a power-law distribution. These structural properties include
the size of documents [6] and frequency of term and schema occurrence [6,15,19].
Such observations have been used as heuristics in the implementation of triple
stores and data compressors.

The two meaning proxies we have used were defined by [10] who report the
empirical entropy and the mutual information of both Y C and Y P for various
datasets. However, we note that the distribution underlying Y C and Y P , as well
as the joint distribution on pairs 〈Y P , Y C〉, is unknown and has to be estimated
from the observed frequencies of occurrence in the data. This induces a bias in
the reported mutual information. Specifically, the mutual information may be
substantial even though the variables Y C and Y P are in fact independent. Our
approach in Section 2 avoids this bias.

Social Meaning The concept of social meaning on the Semantic Web was
actively discussed on W3C mailing lists during the formation of the original



RDF standard in 2003-2004. social meaning is similar to what has been termed
the “human-meaningful” approach to semantics by [9]. While social meaning has
been extensively studied from a philosophical point of view by [11], to the best
of our knowledge there are no earlier investigations into its empirical properties.

Perhaps most closely related is again the work in [10]. They study the same
two meaning proxies (which we have adopted from their work), and report on
empirical entropy and mutual information of between two quantities. That is
essentially different from our work, where we study the entropy and mutual
information content not between these two quantities, but between each of them
and the IRIs whose formal meaning they capture. Thus, [10] tells us whether
type-sets are predictive of predicate-sets, whereas our work tells us whether IRIs
are predictive of their type- and predicate-sets.

Naming RDF resources Human readability and memorization are explicit
design requirements for URIs and IRIs. [3,8,20] At the same time, best prac-
tices have been described that advise against putting “too much meaning” into
IRIs [20]. This mainly concerns aspects that can easily change over time and
that would, therefore, conflict with the permanence property of so-called ‘Cool
URIs’ [2]. Examples of violations of best practices include indicators of the status
of the IRI-denoted resource (‘old’, ‘draft’), its access level restrictions (‘private’,
‘public’) and implementation details of the underlying system (‘/html/’, ‘.cgi’).

Several guidelines exist for minting IRIs with the specific purpose of naming
RDF resources. [17] promotes the use of the aforementioned Cool URIs due
to the improved referential permanence they bring and also prefers IRIs to be
mnemonic and short. In cases in which vocabularies have evolved over time the
date at which an IRI has been issued or minted has sometimes been included as
part of that IRI for versioning purposes.

6 Conclusion & future work

In this paper we have shown that Semantic Web data contains social meaning.
Specifically, we have quantitatively shown that the social meaning encoded in IRI
names significantly coincides with the formal meaning of IRI-denoted resources.

We believe that such quantitative knowledge about encoded social meaning
in Semantic Web names is important for the design of future tools and meth-
ods. For instance, ontology alignment tools already use string similarity metrics
between class and property names in order to establish concept alignments [18].
The Ontology Alignment Evaluation Initiative (OAEI) contains specific cases
in which concept names are (consistently) altered [7]. The analytical techniques
provided in this paper can be used to predict a priori whether or not such tech-
niques will be effective on a given dataset. Specifically, datasets in the upper
right quadrant of Figure 2 are unlikely to yield to those techniques.

Similarly, we claim that social meaning should be taken into account when
designing reasoners. [14] already showed how the names of IRIs could be used
effectively as a measure for semantic distance in order to find coherent subsets



of information. This is a clear case where social meaning is used to support
reasoning with formal meaning. Our analysis in the current paper has shown
that such a combination of social meaning and formal meaning is a fruitful
avenue to pursue.
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