“# OF AMSTERDAM

L .

[UNIVERSITY V U

Large-scale NETWORK MOTIF ANALYSIS
using compression

The title of our paper is “Large-scale
network motif analysis using
compression”. My name is Peter Bloem,
and my co-author is Steven de Rooij.

Graphs, or networks, are a very powerful
way of capturing and storing knowledge.
However, the first view we get of our
data is usually something like this: a big,
tangled ball of wool. It looks impressive,
but it tells us very little.

One solution, is to look for building
blocks: small substructures that occur
often, and where they occur play the
same role. This is called motif analysis.

An analogy

Most frequent patterns

Null model

adistribution on books/graphs

Expectedness of frequency
t 1

with respect to null-mode

L .

structure in text versus structure

in graphs

~ o
g)
[]

the, be, to, of, and, a, ... frequent subgraphs

frequency of “species” in book | frequency of 38 in data
o

To explain by analogy, imagine that you
are given a book, and you want to find
its building blocks. Your first approach
might be to simply look for frequent
substructures. This would give you a list
of words like the, be, to etc. This may be
useful, but it isn’t very specific to this
particular book: you’d get the same
result with any other English book.

To find patterns that are particular to this
book, we need a null model: a
probability distribution that tells us, for a
particular word, in this case “species”
what frequencies we are likely to see in a
book of this length.

We can then take the frequency of the
word species in our book, and and
compute the probability of seeing the
word “species” at least that often. If that
probability is very low, we can say that
we’ve seen the word unexpectedly often,
and it is therefore a characteristic word
for our book.

The same logic applies to graphs: we
count subgraphs, but we evaluate their
frequencies against those predicted by a
null model.

Our solution

high-level intuition
“+ Compress the data using the subgraph g.

+ Compare to compression under a null model (a baseline compressor).

the Problem The problem is that for a given
sy xpersiec o conpuie distribution on graphs, the resulting
distribution on frequencies is very
expensive to compute. Usually, the best
p(6) we can do is to sample a large number
of graphs, and count the frequencies of
B the subgraph in each, building up a
-'I;. histogram approximation.
| .

We propose the following approach; we
compress the data using the fact that
subgraph g occurs very often. Then, we
compare the size of the compressed
graph to the compression achieved by a
baseline model.

If the first compressor does substantially
better, we consider the subgraph a
motif. This may seem like a radically
different approach, but we can frame it
in the same probabilistic terms as the
traditional method.

L____|
Our solution

in probabilistic terms

+ Minimum Description Length (MDL): Every probability distribution is a compressor and vice versa.

+ Given p with probability p(x), we have L with codelength L(x) = 2:)

+ DON'T: Compute the probability of g having frequency f under the null model.
+ DO: Compute the probability that Lmoif(g) << Lnl(g) under the null model.

« I g comes from prll, no compressor can substantially beat Luul,

||
Results

apreview
+ Graphs with billions of edges can be usefully analyzed in ~9 hrs on a single compute node.
“ Quality of motifs found is comparable to the traditional method.

+ We introduce a classification-based experiment for measuring this.

Here is a brief preview of the results; our
methods allows very large graphs to be
analyzed on modest hardware, and we
show that the quality of the resulting
motif is comparable to that of the
traditional method.

L____|
Outline

“+ MDL hypothesis testing for pattern analysis
« preliminaries of MDL
+ NHST testing with MDL
“+ Network motif analysis with MDL
* Motif code
* Null models

“ Results

Here is the outline for the rest of the talk.

Traditional motif analysis is based on the
use of significance testing as a proxy for
pattern mining. Using ideas from
minimum description length theory, we
can put our method in the same
framework. We will discuss the basics of
MDL and how we can perform
significance testing with it.

We will then describe our motif code,
and the null models we use, and finish
up with some experimental results.

L]
Null hypothesis significance testing (NHST)

a heuristic for pattern interestingness

p()

.‘.
2/
()

If p(F > f,) < 0.05, then we call g a motif

L .

The traditional method is based on
significance testing.

Our null hypothesis is that the data came
from the null model. We then observe an
event, a high frequency of subgraph g,
that is so improbable under the null
model, that we can reject the null
hypothesis. The data couldn’t have
come from the null model.

The null model isn’t usually very realistic,
so this isn’t that interesting in itself.
However, we then use this as a heuristic
for whether a subgraph is interesting.
We say that any subgraph that allows us
to reject the null hypothesis, is
interesting.

To cast our method in the same
framework, we need to look at the
basics of the minimum description
length principle.

MDL NHST

minimum description length for null-hypothesis significance testing

+ Preliminary 1: Every probability distribution can be used as a code and vice versa.

AN

LN
Sl

plx) = 2

L(x) = - loga p(x)

The founding principle behind MDL is
that codes, i.e. compressors, can be
equated with probability distributions.

Imagine that we want to encode the six
target objects a through f. The codes we
use in MDL, so called prefix-free codes,
have the property that they can be
drawn as a binary tree with the target
objects on the leaves. The codewords
can be read off the path from the root to
the target leaf.

We can easily turn this into a probability
distribution: we start at the root, and flip
a coin to decede whether to move left or

right. A leaf will be chosen with
probability 2-to-the-power minus the
length of its codeword.

More surprising, is that the reverse is
also possible. If we allow a one-bit
margin of error, any probability
distribution can be turned into a code,
so that the length of the codeword for an
object is the negative logarithm of its
probability.

The takeaway is that we can equate
probability distributions and codes. A
distribution that assigns x a high
probability with assign it a short

« If xis sampled from p=!, then no code L* can compress x substantially better than Lol

+ More precisely:

pnull(Lnull(X) - L*(X) > k) < 2'k

The second principle we will use is the
no hypercompression inequality. It states
that if we sample x from a distribution,
no other distribution will give us a better
compression than the code
corresponding to the source of x.

Specifically the probability that any other
code does better by k bits decays

L. exponentially. Note that this means that
seen an improvement of even 30 bits is a
one-in-a-billion event.

MDL NHST Using the no-hypercompression

minimum description length for null-hypothesis significance testing
“ Choose alternative code L* before seeing the data.

+ Compute Ln(x), L*(x)

Louli(x)

“ We can reject pn!l as the source of the data with p-value 2™

L .

inequality, we can define an MDL-based
hypothesis test: we define an alternative
code L*, before seeing the data, and if it
compresses x better than the code
corresponding to the null model, we can
reject the null model as the source of the
data with p-value 2+,

L]
MDL NHST with parameter 6

minimum description length for null-hypothesis significance testing
+ For example py!(g): equal probability for all graphs with dimensions n, m (zero for all others).

+ Two part coding L/(g) = Lerier(0) + Lyl (g)

Lorior(0)

L*(x)

* We can reject pnl, for all priors, as the source of the data with confidence at least 2™

If our null model has a parameter, we
need to deal with that. For instance, the
Erdos-Renyi model assigns equal
probability to all graphs with particular
dimensions (n, m). This is not a code for
all graphs. To make it one, we can use
two-part coding: we first use a different
code to store (n, m) and then use that
information to encode the graph using
the Erdfos-Renyi code. We call this first
code the prior.

This raises the question how much the
choice of prior influences the outcome.
To eliminate the choice entirely, we can
compare to the null code minus the prior,
which is always a lowerbound on the
total codelength. This makes things
harder for L*, but if we still manage to
reject the null model, we can reject it for
all possible priors.

L]
Example

is a particular clique unusually big?
Let G be a large graph with clique C
« Is C unusually big?
+ Traditional approach: measure clique sizes in a large sample from pr!, and compare.
“ MDL: Design a code L* that uses the fact that C is a clique to compress.

* L% record a list of nodes in C, remove all edges in C, store the remainder with L,

| [o Attt on MDL i st foraph anlysi, o1 2018 1

L]
Example

is a particular clique unusually big?

{3,4,6,7,9 +

9 Ml g

Lprior(0)

k

L(x)

| I oo A votoril on ML hypothesis esting for graph anaysis Bloem et al 2018

Here’s an example for how to use an
MDL hypothesis test to show that a
clique in unexpectedly large. We first
design a code that uses the fact that
there is a large clique to compress the
graph: we store the nodes of the clique,
remove all its edges from the graph, and
store the remained. This information is
enough to reconstruct the graph.

When we store the rest of the graph, we
do so using the null model, so that the
only advantage the alternative code has
is that it knows the clique.

If this code beats the null model code by
k bits, discounting the prior, we can
reject the null model with confidence 2«
and take this as a heuristic for the
meaning of the clique.

L____|
Caveats and reminders

“+ We prove (statistically) that pru!l is not the source of the data. We do not prove (in any sense)

that the pattern we used is interesting or characteristic. The NHST is a heuristic for pattern mining.

that the alternative model is the source of the data.

“ In fact
prl is usually chosen as a trade-off between scalability and power,
and sois p*.

“ All of this is true for both the MDL and the traditional approach.

It’s important to emphasize that we are
proving only that the null model was not
the source of the data. We use the fact
that a pattern allows us to do this, as a
heuristic for the pattern being
meaningful, but we haven’t proved
anything about the pattern.

In fact, because the null model is usually
chosen as a tradeoff between scalability
and power, the fact that the null model
can be rejected is rarely surprising.

Now that have our framework in place,

Outline
we just need to define a motif code, and
some null models.
“ Network motif analysis with MDL
* Motif code
<+ Results
| = v
Motif code Here is the basic principle behind our
motif code: we remove the motif from
the graph, replacing each instance by a
special motif node. These nodes are
A annotated to indicate which node inside
AW the motif the edge connects to.
o We store the motif once, together with
the data G the potential motif G the template graph T ‘the template graph T_ This informa‘tion iS
L. . sufficient to reconstruct the graph. Note
that we’ve skipped a lot of details here
for the sake of time.
Motif code Note that we only compute the

iple graphs.
rull model

codelength directly. We are never
computing the actual codewords.

L]
Searching for subgraphs and instances

quick and dirty

+ Take a short random walk, extract induced subgraph, repeat (1M iterations for all experiments).

Keep a dictionary from (canonicalized) subgraphs to a list of known instances.
+ This algorithm is
O(1) in the size of the graph,

+ very biased.

The motif code itself doesn’t tell us
which subgraphs to try. For that, we
need to generate candidate subgraphs,
and their instances in the graph.

Probably the fastest way of doing this is
to sample subgraphs by doing short
random walks. After a random walk, we
extract the induced subgraph of the
encountered nodes and keep a
dictionary mapping subgraphs to their
instances in the graph.

The running time of this algorithm is
independent of the size of the graph, so
very scalable. But because the
frequencies it returns are very biased, it
has never been reliable for traditional
motif analysis. In our method, this bias
doesn’t affect the correctness of the
hypothesis test.

L____|
Null models

defining null models in the context of MDL
“ Erd&s-Renyi (ER) model: uniform distribution over all graphs with the same dimensions.
+ Degree sequence (DS) model: uniform distribution over all graphs with degree sequence d.
+ Edgelist (EL) model: approximation to the DS model.

* Strictly worse, but much cheaper to compute.

We’ve seen the Erdos-Renyi model
already, but a more common distribution
in motif analysis is the degree
sequence distribution, This distribution
which assign equal probability to all
graphs with the same degree sequence.

The DS model is a bit expensive to
compute, so we also introduce a
cheaper alternative, the EL model. This
model is strictly worse, but it can be
computed in linear time in the length of
the degree sequence.

In our experiments we will pay particular
attention to whether the EL model is an

acceptable proxy for the DS model,
since the use of the EL model is crucial
to making our method scalable.

||
Null models
degree sequence model

% all graphs with degree sequence d

DS() =
Pq (G)_W

LP5G) = 10g] %4

LPS@G) = 1PN) + L35Ya) + LPSG)

Lyi(x) Lei(d) Leror(#d)

We’ve seen the Erdos-Renyi model
already, but a more common distribution
in motif analysis is the degree
sequence distribution, This distribution
which assign equal probability to all
graphs with the same degree sequence.

If we discount the prior on the whole
sequence entirely, the lowerbound
becomes much too strict to detect any
motifs. Instead we use a kind of three-
part coding approach. We first store the
frequencies of the degrees of d using an
arbitrary prior. Then we store the
sequence itself using a Dirichlet-
multinomial model, and then store the

For a directed graph the degree
sequence is a sequence of pair of
integers (the in- and outdegree).

Fdge list model The size of G is, unfortunately, difficult
to compute. As an alternative, we can
- Compuing (7] e look at Sd: the set of all lists of edges
d representing simple graphs with degree
| g9 < |8 .
e sequence d. This represents the same
o o T set of graphs as Gd, but some will be
TR counted double. We get the EL code by
replacing G with Sd.

L . This means our null model becomes
strictly less good, but much faster to
compute. For smaller graphs, we can
compute both, to see if the EL model
makes an acceptable proxy for the DS
model.

S?nmary

L____|
Outline

“ Results

L____|
Results

“ Synthetic data
* Sanity checks: are inserted motifs detected, are non-motifs left undetected?
“+ Medium-sized real world data
« Is the EL model an acceptable proxy for the DS model?
Classification
* Are the subgraphs found characteristic for the data?
+ Scaling up

* What can we do on a single compute node (8 cores, 64Gb) in 1-2 days?

L .

We perform four experiments.

One on synthetic data, to see whether
the basic properties we expect of a motif
analysis hold.

On real world datasets to see whether
the degree sequence model and edgelist
model provide similar results.

On a graph classification dataset to
see whether the results of our analysis
are good at characterizing graphs.

And finally, we see how far we can scale
our method using a single compute

L]
Synthetic data

q

=150

OUER NI RRGHATRANAS

L .

For this experiment, we sampled a
medium sized graph and inserted a
number of instances of a specific motif.
The motif is the ‘house’ shape bottom
left, and the number of inserted motifs
was either 0, 10 or 100.

We then apply our method and compare
the frequency of subgraphs found to
their log-factor.

Note that:

* Many very high frequency subgraphs
exist, which are not motifs.

» The motifs are extremely low-
frequency.

* With just ten instances, the motif is
discovered.

* Some subgraphs that overlap with the
motif (containing triangles or
quadrilaterals) are also returned as
motifs.

L____|
Real data

medium size

12000

[T T R
/TR T PHAM AN SR P iff

8/

Here is the result of one of the tests on a
real-world graph. We plot the log factors
for three different null models. Note that
the Erdos Renyi model disagrees with
the others, but the Degree-sequence
and Edgelist models follow a very similar
trend. We see this in all four datasets
tested, which suggests that for many
datasets the edgelist model will be an
acceptable proxy for the degree
sequence model.

||
Classification

can we show that the re: ng m or the data?

+ A good motif characterizes the data: the fact that Gy has the motif and Gz doesn't is meaningful information in

the domain of the data

Aty . o
s SESEESEESE SN SESESEESssEEs)]

[= mms ams 2z mn msmsmssssss]
= clas

[Exmmamassssznmas =n msm s s a]
= class

S

To test whether the motifs returned by
our method, using the EL model, are
useful, we perform a graph classification
experiment. We take a graph
classification dataset and check whether
the 29 graphs of 3, 4, or 5 nodes are
motifs.

This gives us a binary vector of size 29,
which use as a feature vector for the
graph. If the motif judgements are good
at characterizing the graphs, the
resulting feature vector should allow us
to solve the classification task. We apply
a linear SVM and report the test
accuracy.

L____|
Classification

0.8 - -
gos . . . -
goa Ly | - Il .
0.2 - _ = counting
EEm motive
0.0 - -
data | #nodes # links h K 7 m
ATFB 17 911 10 4 1877.11 T7141.48
AM | 1495566 2393604 3000 11 2506.07 4392.06
BGS 333 613 362 627 250 2 3097.47 4404.49

We can mainly looking to improve over
the majority-class baseline, indicated by
the white line. On all three datasets, our
method significantly outperforms this.

Compared to the traditional method (in
gray) we outperform it significantly on
one dataset, underperform significantly
on another, and we see no significant
difference on a third. Our method is
much more scaleable than the traditional
method, so there will be many cases
where a potential drop in performance is
acceptable.

Scaling up

what can we do on one compute node?
data disk n m |M| mem. t preload search motifs
wiki-nl? 1M 13M 36 16Gb 16 Tm 8
36 5Gb 16 13m 8
36 2Gb 1 25m 8
10 11 Gb 1 2h 41m 0
v 36 1Gb 1 8m 1h 30m 8
wiki-en® v 12M 378M 36 2Gb 1 4h58m 6h 6m 10
v 8 8Gb 1 6h 5m 23
twitter v 53M 1963M 36 6Gb 1 17h12m 33h 19m 0
v 7 8Gb 1 54h 26m 0
friendsterd v 68M 258 M 36 6Gb 1 42h37m 45h 2m 68
v 36 56Gb 9 8h 38m 68
v 10 7Gb 1 35h 7m 57

Finally we see what can be done on a
single compute node.

We use a single compute node with 8
cores and 64 Gb for these experiments.

Looking at the second-to-last line, we
see that if we use the full resources of
the node, we can perform a full motif
analysis, returning many candidates in
under 9 hours. If we further limit the
resources to those of an average
consumer laptop, the time of analysis
increases to as much as two days, but
the experiment is still feasible.

Conclusions

+ We moved the goal-posts a bit, but the result is a very scalable method with some additional advantages

+ Conservative hypothesis test

+ Accurate computation of low p-values (if we get a high compression)

+ No accurate search for or count of instances required. Any set of instances provides a valid test.

« Comparison between multiple motif sizes

Many subtleties to use and interpretation

+ Should we care about multiple testing?

« Is the choice of null model important?

+ These are discussed at length in the paper. Feel free to ask in the QA or at vu@peterbloem.nl.

L .

In conclusion, we present a very
scaleable approach to motif analysis,
and more generally, to pattern mining
using null-hypothesis testing. Our
approach has many other benefits,
including the use of a strictly
conservative hypothesis test and very
accurate computation of low p-values.

There are many subtleties to the
interpretation of these results. These are
discussed at length in the paper, and we
would, of course, be happy to answer
any questions in the Q&A session.

