
MACHINE LEARNING

PETER BLOEM

FRACTAL GEOMETRY
AND

FRACTAL GEOMETRY

MACHINE LEARNING
AND

PETER BLOEM
March 30, 2010

Master’s thesis in Artificial Intelligence
at the University of Amsterdam

supervisor

Prof. Dr. Pieter Adriaans

committee

Dr. Jan-Mark Geusebroek
Prof. Dr. Ir. Remko Scha

Dr. Maarten van Someren

CONTENTS

Summary iii

1 Introduction 1

1.1 Machine learning . 8

1.2 Fractals and machine learning . 9

2 Data 11

2.1 Dimension . 11

2.2 Self similarity . 23

2.3 Dimension measurements . 27

3 Density estimation 31

3.1 The model: iterated function systems 31

3.2 Learning IFS measures . 33

3.3 Results . 37

3.4 Gallery . 41

3.5 Extensions . 42

4 Classification 45

4.1 Experiments with popular classifiers 45

4.2 Using IFS models for classification 50

5 Random fractals 57

5.1 Fractal learning . 57

5.2 Information content . 58

5.3 Random iterated function systems 60

Conclusions 75

Acknowledgements 77

A Common symbols 79

B Datasets 81

B.1 Point sets . 81

B.2 Classification datasets . 84

C Algorithms and parameters 87

C.1 Volume of intersecting ellipsoids 88

C.2 Probability of an ellipsoid under a multivariate Gaussian 89

C.3 Optimal similarity transformation between point sets 91

C.4 A rotation matrix from a set of angles 92

C.5 Drawing a point set from an instance of a random measure 93

C.6 Box counting dimension . 95

C.7 Common parameters for evolution strategies 96

D Hausdorff distance 97

D.1 Learning a Gaussian mixture model 97

E Neural networks 99

E.1 Density estimation . 99

E.2 Classification . 101

References 105

Image attributions 109

Index 110

SUMMARY

The main aim of this thesis is to provide evidence for two claims. First, there are domains
in machine learning that have an inherent fractal structure. Second, most commonly
used machine learning algorithms do not exploit this structure. In addition to investi-
gating these two claims, we will investigate options for new algorithms that are able to
exploit such fractal structure.

The first claim suggests that in various learning tasks the input from which we wish to
learn, the dataset, contains fractal characteristics. Broadly speaking, there is detail at all
scales. At any level of ’zooming in’ the data reveals a non-smooth structure. This lack
of smoothness at all scales can be seen in nature in phenomena like clouds, coastlines,
mountain ranges and the crests of waves.

If this detail at all scales is to be exploited in any way, the object under study must also
be self-similar, the large-scale features must in some way mirror the small-scale features,
if only statistically. And indeed, in most natural fractals, this is the case. The shape of
a limestone fragment will be closely related to the ridges of the mountainside where it
broke off originally, which in turn will bear resemblance to the shape of the mountain
range as a whole.

Finding natural fractals is not difficult. Very few natural objects are at all smooth, and
the human eye has no problem recognizing them as fractals. In the case of datasets
used in machine learning, finding fractal structure is not as easy. Often these datasets
are modeled on a Euclidean space of dimension greater than three, and some of them
are not Euclidean at all, leaving us without our natural geometric intuition. The fractal
structure may be there, but there is no simple way to visualize the dataset as a whole.
We will analyze various datasets to investigate their possible fractal structure.

Our second claim is that when this fractal structure and self-similarity exists, most com-
monly used machine learning algorithms cannot exploit it. The geometric objects that
popular algorithms use to represent their hypotheses are always Euclidean in nature.
That is, they are non-fractal. This means that however well they represent the data at a
narrow range of scales, they cannot do so at all scales, giving them an inherent limitation
on how well they can model any fractal dataset.

While the scope of the project does not allow a complete and rigorous investigation of
these claims, we can provide some initial research into this relatively unexplored area of
machine learning.

CHAPTER 1 · INTRODUCTION
This chapter introduces the two basic concepts on which this thesis is built: frac-
tals and machine learning. It provides some reasons for attempting to combine
the two, and highlights what pitfalls may be expected.

The history of fractals begins against the backdrop of the Belle Époque, the
decades following the end of the Franco-Prussian war in 1871. Socially and
politically, a time of peace and prosperity. The nations of Europe were held
in a stable balance of power by political and military treaties, while their citi-
zens traveled freely. The academic world flourished under this relative peace.
Maxwell and Faraday’s unification of magnetism and electricity had left a sense
in the world of physics that the basic principles of the universe were close to be-
ing understood fully. Cantor’s discoveries in set theory sparked the hope that all
of mathematics could be brought to a single foundation. Fields such as history,
psychoanalysis and the social sciences were all founded in the final decades of
the 19th century.

As tensions rose in Europe, so they did in the academic world. Einstein’s 1905
papers suggested that physics had far from reached its final destination, offering
the possibility that space and time were not Euclidean. Paradoxes in the initial
foundations of set theory fueled a crisis of faith in the foundations of mathe-
matics. In the postwar period, these tensions culminated in the development of
quantum mechanics and general relativity, disconnecting physics forever from
human intuition. The mathematical world, having resolved its paradoxes, was
struck by the twin incompleteness theorems of Gödel, and forced to abandon
the ideal of a complete and consistent mathematics.

Considering all these revolutions and paradigm shifts, it is understandable that
the development of fractal geometry, which also started during this era, was
somewhat overshadowed, and its significance wasn’t fully understood until more
than half a century later. Nevertheless, it too challenged fundamental principles,
the cornerstones of Euclidean geometry. Now, one hundred years later, it is dif-
ficult to find a single scientific field that has not benefited from the development
of fractal geometry.

The first fractals were described more than 50 years before the name fractal

FIGURE 1.1: The Koch curve. The initial image, a line segment, is replaced by four line segments, creating a
triangular extrusion. The process is repeated for each line segment and continuously iterated.

CHAPTER 1—INTRODUCTION 2

FIGURE 1.2: The Sierpinski triangle.

itself was coined. They were constructed as simple counterexamples to com-
monly held notions in set theory, analysis and geometry. The Koch curve shown
in figure 1.1, for instance, was described in 1904 as an example of a set that
is continuous, yet nowhere differentiable. Simply put, it is a curve without any
gaps or sudden ‘jumps’, yet at no point does it have a single tangent, a unique
line that touches it only at that point. For most of the nineteenth century it was
believed that such a function could not exist.

The Koch curve is constructed by starting with a single line segment of length
1, cutting out the middle third and placing two line segments of length one
third above it a in a triangular shape. This leaves us with a curve containing
four line segments, to each of which we can apply the same operations, leaving
us with 16 line segments. Applying the operation to each of these creates a
curve of 64 segments and so on. The Koch curve is defined as the shape that
this iterative process tends to, the figure we would get if we could continue the
process indefinitely, the process’ limit set. The construction in figure 1.1 shows
the initial stages as collections of sharp corners and short lines. It is these sharp
corners that have no unique tangent. As the process continues, the lines get
shorter and the number of sharp points increases. In the limit, every point of
the Koch curve is a corner, which means that no point of the Koch curve has a
unique tangent, even though it is continuous everywhere.

Another famous fractal is the Sierpinski triangle, shown in figure 1.2. We start
with a simple equilateral triangle. From its center we can cut a smaller up-side-
down triangle, so that we are left with three smaller triangles whose corners are
just touching. We can apply the same operation to each of these three triangles,
leaving us with nine even smaller triangles. Apply the operation again and we
are left with 27 triangles and so on. Again, we define the Sierpinski triangle to
be the limit set of this process. As an example of the extraordinary properties
of fractals, consider that the number of triangles in the figure after applying the
transformation n times is 3n. If the outline of the original triangle has length
1, then after the first operation the triangles each have an outline of length 1

2
(since each side is scaled by one half), and after n steps each triangle has an
outline of length 1

2n . As for the surface area, it’s easy to see that each operation
decreases the surface area by 1

4 , leaving (3
4)

n after n iterations. If we consider
what happens to these formulas as the number of operations grows to infinity,
we can see that the Sierpinski set contains an infinite number of infinitely small
triangles, the sum of their outlines is infinite, yet the sum of their surface areas
is zero.

CHAPTER 1—INTRODUCTION 3

FIGURE 1.3: The Hilbert curve. See E.2 for attribution.

For another unusual property of these fractal figures we turn our attention to the
Hilbert curve, shown in figure 1.3. The curve starts as a ‘bucket’ shape made up
of three line segments. Each line segment is then replaced by a smaller bucket,
which is rotated at right angles according to simple rules, and the buckets are
connected. The process is repeated again, and a complicated, uninterrupted
curve emerges. We can see from the first few iterations that the curve progres-
sively fills more and more of the square. It can be shown that in the limit, this
curve actually fills all of the square. That means that for every point in the
square, there is a point on the Hilbert curve, and the total set of points on the
Hilbert curve is indistinguishable from the total set of points inside the square.
This means that while intuitively, we might think of the Hilbert curve as one
dimensional—it is after all, a collection of line segments—in fact it is precisely
equal to a two dimensional figure, which means that it must be two dimensional
as well.

In the early years of the 20th century, many figures like these were described.
They all have three properties in common. First, they were all defined as the
limit set of some iterative process. Second, they are all self similar, a small part
of the figure is exactly equal to a scaled down version of the whole. And finally,
they all showed groundbreaking properties, sometimes challenging notions that
had been held as true since the beginnings of geometry. Despite the far reaching
consequences, they were generally treated as pathological phenomena. Con-
trived, atypical objects that had no real impact other than to show that certain
axioms and conjectures were in need of refinement. Ultimately, they were to be
got rid of rather than embraced.

It was only after the Second World War that fractals began to emerge as a family
of sets, rather than a few isolated, atypical counterexamples. And more impor-
tantly, as a family that can be very important. This development was primarily
due to the work of Polish-born mathematician Benôıt Mandelbrot. The develop-
ment of Mandelbrot’s ideas is best exemplified by his seminal 1967 paper, How
Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension
(Mandelbrot, 1967). In this paper, Mandelbrot built on the work of polymath
Lewis Fry Richardson. Richardson was attempting to determine whether the
length of the border between two countries bears any relation to the probability
of the two countries going to war. When he consulted various encyclopedias to
get the required data, he found very different values for the lengths of certain
borders. The length of the border between Spain and Portugal, for instance, was
variously reported as 987 km and 1214 km. Investigating further, Richardson
found that the length of the imaginary ruler used to measure the length of a
border or coastline influences the results. This is to be expected when measur-
ing the length of any curve, but when we measure say, the outline of a circle
with increasingly small rulers, the resulting measurements will converge to the

CHAPTER 1—INTRODUCTION 4

true value. As it turns out, this doesn’t hold for coastlines and borders. Every
time we decrease the size of the ruler, there is more detail in the structure of
the coastline, so that ultimately the sum of our measurement keeps growing as
our measurements get more precise.

Richardson’s paper was largely ignored, but Mandelbrot saw a clear connection
with his own developing ideas. He related the results of Richardson to the
early fractals and their unusual properties. As with the Hilbert curve we are
tempted to think of coastlines as one-dimensional. The fact that they have no
well-defined length is a result of this incorrect assumption. Essentially, the set
of points crossed by a coastline fills more of the plane than a one-dimensional
curve can, but less than a two-dimensional surface. Its dimension lies between
one and two. In these days the dimension of the length of the British coast is
determined to be about 1.25.1

As Mandelbrot developed these ideas, it became clear that structures with non-
integer dimensions can be found everywhere in nature. For thousands of years,
scientists had used Euclidean shapes with integer dimensions as approximations
of natural phenomena. Lines, squares, circles, balls and cubes all provided
straightforward methods to model the natural world. The inaccuracies resulting
from these assumptions were seen as simple noise, that could be avoided by
creating more complicated combinations of Euclidean shapes.

Imagine, for instance, a structural analysis of a house. Initially, we might repre-
sent the house as a solid cube. To make the analysis more accurate, we might
change the shape to a rectangular box, and add a triangular prism for the roof.
For even greater accuracy, we can replace the faces of this figure by flat boxes
to represent the walls. The more simple figures we add and subtract, the more
accurate our description becomes. Finally, we end up with a complicated, but
Euclidean shape. If we follow the same process with natural elements, we notice
a familiar pattern. To model a cloud, we may start with a sphere. To increase
accuracy we can add spheres for the largest billows. Each of these will have
smaller billows emerging from it, and they have smaller billows emerging from
them, and so on. To fully model the cloud, we need to repeat the process in-
definitely. As we do so, the structure of the cloud changes from Euclidean to
fractal.

The array of fractal phenomena found in nature is endless. Clouds, coastlines,
mountain ranges, ripples on the surface of a pond. On the other hand, the closer
we look, the more difficult it becomes to find natural phenomena that are truly
without fractal structure. Even our strictly Euclidean house becomes decidedly
fractal, when we want to model the rough surface of the bricks and mortar
it is made of, the swirls in the smoke coming from the chimney, the folded
grains in the wood paneling, even the minute imperfections on the surface of
the windows.

1.0.1 Fractals

This section provides a quick overview of some of the fractals and fractal fami-
lies that have been described over the past century.

1From measurements by Richardson, although he didn’t interpret the value as a dimension.

CHAPTER 1—INTRODUCTION 5

FIGURE 1.4: Three fractals defined by transformations of an arbitrary initial image. The Sierpinski triangle, the
Koch curve and a fractal defined by three randomly chosen affine transformations.

Iterated function systems

One of the most useful families of fractals are the iterated function systems.
This family encompasses all sets that are exactly self similar. That is, all sets
that are fully described by a combination of transformed versions of itself. The
Sierpinski triangle, for instance, can be described as three scaled down copies
of itself. This approach leads to a different construction from the one we have
seen so far. We start with any initial image (a picture of a fish, for instance) and
arrange three scaled down copies of it in the way that the Sierpinski triangle
is self similar. This gives us a new image, to which we can apply the same
operation, and so on. The limit set of this iteration is the Sierpinski triangle.
The interesting thing here is that the shape of the initial image doesn’t matter.
The information contained in the initial image disappears as the iteration goes
to infinity, as shown in figure 1.4

Any set of transformations that each reduce the size of the initial image defines
its own limit set (although a different set of transformations may have the same
limit set). Most of the classic fractals of the early 20th century can be described
as iterated function systems.

There is another way to generate the limit set of a set of transformations. Start
with a random point in the plane. Choose one of the operations at random,
apply it to the point, and repeat the process. Ignore the first 50 or so points
generated in this way, and remember the rest. In the limit, the sequence of
points generated this way will visit all the points of the limit set. This method is
known as the chaos game.

Figure 1.5 shows some fractals generated in this way.

CHAPTER 1—INTRODUCTION 6

FIGURE 1.5: Three fractals generated using the chaos game. The Sierpinski triangle, the Koch curve and a fractal
defined by five randomly chosen affine maps.

Strange attractors and basins of attraction

The development of the study of non-linear dynamical systems—popularly known
as chaos theory—has gone hand in hand with that of fractal geometry. The the-
ory of dynamical systems deals with physical systems whose state can be fully
described by a given set of values. Consider, for example, a swinging pendu-
lum. Every point in its trajectory is fully defined by its position and its velocity,
just two numbers. From a given pair of position/velocity values, the rest of its
trajectory can be calculated completely 2 We call the set of values that describes
the system its state. The set of all possible states is called the state space, and
set of states visited by a given system at different points in time is known as its
orbit.

In the case of the pendulum, the state is described by two real values, which
makes the state space a simple two-dimensional Euclidean space. As the pendu-
lum swings back and forth, the point describing its state traces out a pattern in
state space. If the pendulum swings without friction or resistance, the pattern
traced out is a circle. If we introduce friction and resistance, the system’s state
forms a spiral as the pendulum slowly comes to rest.

There are two types of dynamical systems. Those that have a continuous time
parameter, like the pendulum, and those for whom time proceeds in discrete
steps. Continuous dynamical systems can be described with differential equa-
tions, discrete dynamical systems are described as functions from the state space
to itself, so that the point at time t can be found by applying the function itera-
tively, t times, starting with the initial point: x5 = f5(x0) = f (f (f (f (f (x0))))).

The trajectory of a point in state space, its orbit, can take on many different
forms. Dynamical systems theory describes several classes of behavior that an
orbit can tend towards, known as attractors. The simplest attractors are just

2Under the assumptions of classical mechanics.

CHAPTER 1—INTRODUCTION 7

(A) The Lorenz attractor (B) The Rössler attractor (C) A Pickover attractor

FIGURE 1.7: Three examples of strange attractors. A and B are defined by differential equations in a three
dimensional state space, C is defined by a map in a two dimensional state-space. See E.2 for attributions.

points. The orbit falls into the point and stays there, like the pendulum with
friction tending towards a resting state. A slightly more complicated attractor
is the periodic orbit. The orbit visits a sequence of states over and over again,
like the frictionless pendulum. Note that any orbit that hits a state it has visited
before must be periodic, since the state fully determines the system, and the
orbit from it. Both of these attractors also have limit cycling variants, orbits that
continually approach a point, or a periodic orbit, but never exactly reach it.

FIGURE 1.6: Basins of attraction for the mag-
netic pendulum.

A more complicated type of attractor, and
the phenomenon that gives chaos theory
both its name and its popularity, is the
strange attractor. An orbit in the trajectory
of a strange attractor stays within a finite
part of state space, like a periodic attrac-
tor, but unlike the periodic attractor, it never
visits the same state twice, and unlike the
limit cycling attractors, it never tends to-
wards any kind of simple behavior. The or-
bit instead follows an intricately interleaved
pattern and complicated tangles. Figure 1.7
shows three examples. Almost all strange at-
tractors have a non-integer dimension, and
so can be seen as fractals.

Fractals can be found in dynamical systems
in another place. Consider the following dynamical system: a pendulum with
an iron tip is allowed to swing free in three dimensions. Below it, three magnets
are mounted in a triangular formation. The magnets are strong enough to pull
the pendulum in and allow it to come to rest above one of them. The question is,
given a starting position from which we let the pendulum go, which of the three
magnets will finally attract the pendulum? If we assign each magnet a color, we
can color each starting point in the plane by the magnet that will finally bring
the pendulum to a halt. Figure 1.6 shows the result.

It’s clear that for this dynamical system, each magnet represents a simple point

CHAPTER 1—INTRODUCTION 8

attractor. The colored subsets of the plane represent the basins of attraction of
each attractor. The set of initial points that will lead the orbit to that attractor.
As is clear from figure 1.6, the figure has a complicated fractal structure.

The type of self similarity exhibited by strange attractors and fractal basins is far
less well-defined than that of iterated function systems. Zooming in on one of
the wings of the Lorenz attractor will show layered bands of orbits, and zooming
in further will reveal that these are themselves made up of ever thinner bands.
In that sense there is self similarity, but there is no simple transformation that
will turn the whole attractor into a subset of itself. The fractals resulting from
dynamical systems are likely difficult to learn. Far more so than the iterated
function systems or even the random fractals found in nature.

1.1 Machine learning

The phrase Machine Learning describes a very broad range of tasks. Speech
recognition, controlling a robot, playing games or searching the internet, all
tasks that can be implemented on a computer and where the computer can
learn to perform better by trying different strategies, observing user behavior
or analyzing data. And each task requires its own domain knowledge, different
algorithmic complexities, and different hardware.

To bring together all machine learning research, so that research in one field
can benefit from achievements in another, a kind of framework has emerged
which emphasizes the elements common to all learning tasks, so that general
algorithms can be designed for a wide range of learning tasks and algorithms
can be effectively compared with each other.

While general elements are common to all machine learning research, there
is of course no single standardized framework, and we’ll define here precisely
the type of machine learning on which this thesis will focus. This definition
will be general enough to allow us to make a broad point about fractals in
machine learning, yet tuned to make sure that the concept of fractal data has a
meaningful interpretation.

We will limit ourselves to off line learning. We present an algorithm with a
dataset, the algorithm will build a model and we will then test the model on
unseen data. The dataset has the following structure. A dataset X consists
of n instances x1, ...xn. Each of these instances represents an example of the
phenomenon we are trying to learn about. This could range from people, to
states of the stock market at given moments, to handwritten characters we are
trying to recognize, to examples of sensory input to which a robot must respond.
We must represent these instances in a uniform way so that a general learning
algorithm can process them. For this purpose we represent each instance by
fixed number, d, of features.

Each feature xi1, . . . , xid can be thought of as a ‘measurement’ of instance xi. If
the instances in our dataset represent people, we might measure such things as
height, hair color or the date of birth. However, in this thesis, we will constrain
the datasets to numeric features—measurements that can be expressed as a
single number per instance. Note that dates and nominal features (like hair

CHAPTER 1—INTRODUCTION 9

color) can be converted to numeric features in many ways, so our requirement
does not necessarily rule them out. Thus, our dataset can be seen as an n

by d table, where each column represents a type of measurement, each row
represents a measured instance, and each cell contains a number.

This representation, with the constraint of numeric features, allows us to model
a dataset as a set of points in a d-dimensional space. Each point represents an
instance and each dimension represents a type of measurement. We will call d
the embedding dimension of the dataset.

Now that we have a well defined dataset, we can define learning tasks. We will
limit ourselves to two common learning tasks.

density estimation This task requires only the dataset as described. We assume
that the instances in X are random variables, drawn from some distribu-
tion which we wish to model. In other words, given some new instance x

what is the probability, or probability density, of seeing that instance?

For example, what is the probability of seeing a two meter tall man with
10 cm ring fingers. Or, what is the probability of seeing the Dow Jones
index close above 10300 and the NASDAQ Composite below 2200?

classification For this task, each instance xi is also assigned a class
yi ∈ {C1,C2, ...,Cm}. For instance, each person in a dataset may be sick
or healthy, or each day in a dataset may be rainy, cloudy or sunny. The
task is, given a new instance, to predict its class.

1.2 Fractals and machine learning

In this section we will highlight some of the advantages and pitfalls that the
application of fractal geometry to the problem of machine learning may bring.

1.2.1 Fractal learning

When we talk about fractals and machine learning, we must distinguish be-
tween two scenarios. The first is the learning of fractal data, using any kind
of machine learning algorithm. How well do common machine learning algo-
rithms, such as neural networks and decision trees, perform on data that has a
well defined fractal character? The second scenario is the use of fractal models
to design new machine learning algorithms. If, for instance, we have a particu-
lar family of fractal probability distributions, we can search for the distribution
that best describes a given dataset.

Intuitively, the two are likely to complement one another. If the fractal data
that we are learning is in the set of fractals we are using to model the data, then
our algorithm has an obvious advantage to other algorithms, because it can
theoretically fit the data perfectly. If we generate a large number of points on
the Sierpinski triangle, using the chaos game, we know that the set of iterated
function systems contains a perfect model for this data, because the Sierpinski
triangle can be described as a an iterated function system. This model will
provide a far better fit than any non-fractal model can, simply because the exact
same model was also used to generate the points.

The main caveat here is that the type of fractal most likely to be encountered
in real-life datasets is the random fractal. Random fractals are fractals that are
driven by a random process and have no simple finite description. Examples of
random fractals are natural phenomena like coastlines, clouds or the frequency
of floods in the Nile delta, but also man-made phenomena like the change of
currency conversion rates or commodity prices over time. We cannot reasonably
expect any finite model to be able to describe random fractal data exactly. We
can only hope to find a deterministic model that fits the data well, or a finite
description for the total family of random fractals under investigation.

Our initial attempts to do the former can be found in chapters 3 and 4, for the
latter, see chapter 5.

Of course, even if deterministic fractal models cannot hope to model random
fractals precisely, it is still conceivable that their performance on fractal datasets
is competitive with that of non-fractal models.

1.2.2 The curse of dimensionality

The curse of dimensionality refers to various related problems which occur when
we wish to use statistical techniques on datasets with a high dimensionality.
(Bishop et al., 2006)

Consider for instance, that to sample a one dimensional interval of length one
with a distance of 0.01 between sample points, a set of 100 points will suffice.
In two dimensions, we might initially expect that a grid of points spaced at a
distance of 0.01 produces an analogous sampling, but in fact these points are
only 0.01 units apart along one of the two dimensions. Along the diagonals, the
distance between the points is

√
0.012 + 0.012 ≈ 0.014. To get a distance of

0.01 along the diagonal, we need points spaced about 0.007 units along each
dimension. As the dimensionality increases, the problem gets worse.

As we shall see in chapter 2, many datasets that have a high embedding di-
mension (number of features) have a much lower intrinsic dimension. All non-
fractal models are fixed to a single dimension, taken to be the embedding di-
mension. Fractal models would theoretically be able to adapt their dimension-
ality to that of the dataset, which could be an important step to solving the curse
of dimensionality.

The fact that fractal data can have a high embedding dimension and a low
intrinsic dimension has been called the blessing of self similarity.(Korn & Pagel,
2001)

CHAPTER 2 · DATA
In this chapter, we investigate the notion that datasets can have fractal prop-
erties. We consider the concepts of fractal dimension and self-similarity as they
relate to machine learning.

2.1 Dimension

2.1.1 Introduction of concepts

In chapter 1 we saw that certain shapes like coastlines, mountain ridges and
clouds, have strange geometric properties, and that these properties can be ex-
plained from the fact that they do not have an integer dimension. This solves
one problem, but creates another; how do we generalize the concept of di-
mension so that Euclidean shapes retain their intuitive integer dimensions, and
fractals get a new fractional dimension that fits existing geometric laws?

There are many definitions for fractal dimension, but they don’t always agree.
Thankfully, the disagreements are well understood, and the choice of which
definition of dimension to use generally depends on the task at hand.

The idea behind most methods is always the same. Two types of attributes of
the object being measured are related by a power law

s1 ∝ s2
D (2.1)

where the dimension is the exponent D (or in some cases, can be derived from
D). For example, the measurement of the length of a coastline is related to the
size of the ruler by this kind of relation.

To explain where the power laws come from, we will look at objects as sets of
points in Rm (common objects like lines and cubes are then just sets of infinitely
many points). We define an operation Sσ of scaling by σ ∈ R for individual
points as σ · x. When the operation is applied to a set we define it as Sσ(X) =
{σx | x ∈ X}. That is, the image of this function is the set of all points in X

multiplied by σ. The important thing to realize is that this operation scales all
one-dimensional measures by σ. All lengths, distances, radii and outlines are
all multiplied by σ.

The Euclidean scaling law (also known as the square-cube law) states that if we
measure some m-dimensional aspect of a set (like the volume of a cube or the
area of one of its faces) and we scale the cube by σ, the m-dimensional mea-
surement sm will scale by sm

m. If we take some one-dimensional measurement
s1 (like the length of an edge) we get:

s1σ = smσm

In words, the scaling factor of the measure of some set (length, area, volume or

CHAPTER 2—DATA 12

analog) is determined by a power law, where the exponent is the dimension of
the set.

This scaling law was first described and proved by Euclid for specific geometric
figures such as cubes and cones. A general version was first demonstrated by
Galileo, and has since become one of the cornerstones of science and mathe-
matics. Given the fundamental nature of these scaling laws, it’s no surprise that
the discovery of fractal counterexamples in the early twentieth century came
as a shock. It is because of this (apparent) contradiction, that fractals are still
referred to as non-euclidean.

The contradiction was finally resolved when the notion of non-integer dimen-
sion was introduced and made rigorous. Our task, when faced with a set, is to
find this fractional dimension, which makes the scaling laws work. Because of
the Euclidean scaling law, there are many relations to be found of the form

s1 ∝ sD
D

where s1 is a one-dimensional measurement of a figure, and sD is a measure-
ment related to the figure’s intrinsic dimension. An example of this is the
method of measuring the length of the coast of Britain by ever smaller rulers, as
mentioned in chapter 1. The size of the ruler is a one-dimensional measure and
the scaling of the resulting length measurement is determined by the coastline’s
intrinsic dimension. In this case of course, the measurement is one-dimensional
(which does not match the 1.25 dimensional coastline) so the measurement
itself goes to infinity, but the scaling law still holds.

We can use this relation to determine the figure’s intrinsic dimension, based
on measurements. If we take the measurement of the British coastline as an
example, then our basic assumption is that the length of the ruler, ϵ is related
to the resulting length measurement L as

L = c · ϵD

To determine the dimension, we take the logarithm of both sides:

lnL = ln
[
cϵD

]
(2.2)

lnL = D ln ϵ+ ln c (2.3)

This is a linear relation between lnL and ln ϵ, where the slope is determined by
D. If we measure L for various values of ϵ and plot the results in log-log axes,
the points will follow a line of slope D. This approach—plotting measurements
in log-log axes and finding the slope of a line fitting the points—is the most
common way of determining the fractal dimension from measurements. We
will describe variations of this method that work on general Euclidean sets of
any dimension, and on probability measures.

It should be noted that while the scaling law holds exactly for Euclidean figures,
it may hold only approximately for fractals. To capture any deviations from a
precise scaling law, we write the relation as

L = Φ(ϵ)ϵD

CHAPTER 2—DATA 13

where the function Φ(ϵ) is called the pre-factor. Taking the logarithm on both
sides again, we can rewrite to

D =
lnL

ln ϵ
−

lnΦ(ϵ)

ln ϵ

If we assume that the contribution of the pre-factor to the scaling is negligible
compared to the factor ϵD, more specifically, if

lim
ϵ→0

lnΦ(ϵ)

ln ϵ
= 0 (2.4)

we can still find the dimension using

D = lim
ϵ→0

lnL

ln ϵ

FIGURE 2.1: The power law relation for the cantor
set is not exact. In log-log axes it shows periodicity.
(The power law relation shown here is explained in
section 2.1.5)

This suggests that if we choose small
values of ϵ, we can minimize the er-
ror caused by a non-constant pre-factor.
Note that 2.4 is quite a general require-
ment. Under this requirement the pre-
factor may oscillate or even become un-
bounded. The behavior of oscillating de-
viation from an exact scaling law is called
lacunarity. Lacunarity is used as a mea-
sure of ‘texture’ of fractals, and to dif-
ferentiate between two fractals with the
same dimension.

It has been suggested that deviation from
the scaling law (ie. a lack of correlation
between the measurements in the log-log
plot) can be taken as an indication of low self-similarity. This is an incorrect
assumption (Andrle, 1996). A case in point is the Cantor set. It has perfect
self-similarity, but its pre-factor is periodic in the log-log axes. (Chan & Tong,
2001)

2.1.2 Hausdorff dimension

The Hausdorff dimension (Theiler, 1990; Hutchinson, 2000) is generally con-
sidered to be the ‘true’ dimension in a mathematical sense. For most purposes,
however, its formulation makes it impossible to work with, so many other def-
initions have been devised. These serve as approximations and bounds to the
Hausdorff dimension. We will provide only a summary explanation of the Haus-
dorff dimension for the sake of completeness.

We will first introduce some concepts. We will define the Hausdorff dimension
of a set of points X = {xi}, xi ∈ Rd. Let a covering E of X be any set of sets so that
X ⊆

⋃
e∈E e, ie. the combined elements of E cover X. Let the diameter of a set be

the largest distance between two points in the set: diam(S) = supx,y∈S d(x,y) 1

1As indicated by the sup operation, where open sets and partially open sets are concerned, we

CHAPTER 2—DATA 14

Let E(X, r) be the set of all coverings of X with the additional constraint that
diam(e) < r for all elements e in all coverings in E(X, r).

We can now define the following quantity for X:

Hd(X, r) = inf
E∈E(X,r)

∑
e∈E

diam(e)d

If we let r go to zero, we get the Hausdorff measure:

Hd(X) = lim
r→0

Hd(X, r)

It can be shown that there is a single critical value d̂ for which

Hd =

{
0, d < d̂∞, d > d̂

This value is the Hausdorff dimension, Dh = d̂

The idea behind the Hausdorff dimension can be explained in light of the experi-
ments measuring natural fractals like coastlines. As noted in those experiments,
when measures of integer dimension such as length are used, the measurement
either goes to infinity or to zero (eg, if we were to measure the surface area of
a coast line). If we define a measure that works for any real-valued dimension,
it will have a non-zero finite value only for the set’s true dimension.

2.1.3 Box counting dimension

The box counting dimension is one of the simplest and most useful definitions
of dimension. It is defined for any subset of a Euclidean space.

To determine the box counting dimension, we divide the embedding space into
a grid of (hyper)boxes with side length ϵ.2 The size of the side length of the
boxes is related to the number of non-empty boxes N(ϵ) by a power law:

N(ϵ) ∝
(

1
ϵ

)Db

where Db is the box counting dimension.

For most sets, the box counting dimension is equal to the Hausdorff dimension.
If not, the box counting dimension provides an upper bound.

take the diameter to the largest value that can be approached arbitrarily closely by the distance
between two points in the set.

2If the dataset is represented as one dimensional, we divide the space into line segments, a
two dimensional space is divided into squares, a three dimensional space into cubes and so on
analogously for higher dimensions.

CHAPTER 2—DATA 15

2.1.4 Dimensions of probability measures

When we are considering the dimension of a dataset (a finite set of points), we
need to explain clearly what it is we are actually talking about. After all, the
dimension—by any definition—of a finite set of points is always zero. What
we are actually measuring is the dimension of the underlying probability dis-
tribution. In statistical terms the methods described here are estimators of the
dimension of a probability distribution.

FIGURE 2.2: A fractal probability distri-
bution with a non-fractal support. The
brighter a point is, the greater is its prob-
ability density. The three images above
show its construction from a simple uni-
form distribution.

We assume that each point x in the dataset X is
drawn independently from a single probability
distribution over Rd. Under this probability dis-
tribution p(A) represents the probability that a
point x will fall in a region A ∈ Rd. p(x) rep-
resents the probability density of point x.3 We
will refer to the probability distribution itself as
p.

We could simply create an analogy of the box
counting dimension for probability measures by
dividing the instance space into ever finer boxes
and counting the number of boxes that have a
non-zero probability. For certain distributions,
this would work very well. For example, we
can define a probability distribution by choos-
ing random points on the Sierpinski triangle.
For this distribution, the box counting method
would return the same value as it would for the
Sierpinski triangle. More generally, this method
returns the dimension of the probability distri-
bution’s support, the region of non-zero proba-
bility.4.

For some distributions, this behavior is undesirable. Consider for instance the
probability distribution shown in figure 2.2. The distribution’s support is the
full square pictured. No region of the image has zero probability. This means
that its box counting dimension by the method described above is precisely 2.
This is unsatisfactory because the distribution clearly has a fractal structure (in
fact it’s a simple iterated function system). If we cover the image with boxes
of a small side length, a large percentage of the probability mass will be in a
small percentage of the boxes. This is the structure we are actually interested
in, because it conveys the fractal nature of the distribution, but because no box
will ever have probability truly zero, we do not get it from the box counting
dimension.

To deal with this problem, a ‘spectrum’ of dimensions was introduced, known as
the Renyi dimensions or the generalized dimension. (Theiler, 1990) Let Cϵ be the

3In the whole of this text, we will use p(·) for both probability densities when the argument is a
point and probabilities when the argument is a set. We trust that context will suffice to distinguish
between the two.

4Formally, the support is the smallest set whose complement has zero probability

CHAPTER 2—DATA 16

set of boxes with side-length ϵ used to cover the distribution in the definition of
the box counting dimension. We then define

Iq(ϵ) =
∑
c∈Cϵ

p(c)q

This function is the analog of the box count in the box counting dimension.
Here, instead of counting non-empty boxes, we count the probability mass of
all the boxes, raised to a weighting parameter q ∈ R.

We can then define a dimension for every value of q:

Dq =
1

q− 1
lim
ϵ→0

log Iq(ϵ)
log ϵ

The value of q in this function determines how much importance we attach to
the variance in probability between boxes. It can be shown that Dq is a non-
increasing function of q (Ott et al., 1994). Distributions for which Dq varies
with q are called multifractal distributions. (Or multifractal measures, which is
a more common phrase).

Some specific values of q are particularly interesting. D0 is the box counting
method described earlier. For q = 1, the dimension becomes undefined, but we
can let q→ 1 and solve using de l’Hôpital’s rule, which gives us

D1 = lim
ϵ→0

1
ln ϵ

∑
c∈Cϵ

p(c) logp(c)

The last part of this equation is the negative of the information entropy H(X) =
−
∑

p(x) logp(x). Because of this, D1 is known as the information dimension.
What this equation effectively states is that as we discretize the instance space
into smaller boxes, the entropy of the set of boxes and their probabilities in-
creases by a power law, where the exponent represents the dimension of the
probability distribution.

If we take q = 2, we get

D2 = lim
ϵ→0

1
log ϵ

log
∑
c∈Cϵ

p(c)2

This is known as the correlation dimension. It can be very useful because it is
easy to approximate, as discussed in section 2.1.6.

Dynamical systems

We can easily adapt this approach to define a dimension for dynamical systems.
The following treatment, will give us a definition of the probability of points in
an orbit of a dynamical system that can be used to calculate its dimension.

For the first time period t from initial state x0 we will call the amount of time
that the system spends in region A, η(A, x0, t). We then define a measure
µ(A, x0) as

µ(A, x0) = lim
t→∞ η(A, x0, t)

t

CHAPTER 2—DATA 17

For many point processes µ(A, x0) is the same for all x0, with the possible excep-
tion of a set of initial conditions of zero Lebesgue measure, (ie. a zero chance
of being chosen at random from a uniform distribution). In those cases, we can
discard the x0 argument, and call µ(A) the natural measure of the point process.
This measure fits all the requirements of a probability measure. We will use this
as our probability measure to determine the dimension of a dynamical system,
p(A) = µ(A).

For a completely deterministic process like a dynamical system, it may seem
counter-intuitive to call this a probability measure. The whole orbit is after all,
completely determined by a single initial state, without any probabilistic ele-
ments. In chaotic attractors, however, the slightest error in initial conditions
will be amplified exponentially with time, making the theoretically fully pre-
dictable orbit practically unpredictable. If we represent this uncertainty of the
initial conditions as a uniform probability distribution over a small neighbour-
hood of x0, which is transformed by the dynamical system’s map, then after a
short amount of time our uncertainty about the orbit will have spread out over
phase space into a stable, fractal probability distribution. In other words, under
the iteration of the dynamical system, the probability distribution converges to
the system’s natural measure. In this sense it is natural to consider µ a proba-
bility distribution, because it represents our uncertainty of the system when the
initial conditions are not known with absolute precision.

2.1.5 Point-wise dimension and correlation dimension

If we take any point x on the support of the probability distribution, we define
the pointwise dimension (Theiler, 1990) Dp(x) as:

Dp(x) = lim
ϵ→0

lnp (Bϵ(x))

ln ϵ
(2.5)

Where Bϵ(x) is a ball of radius ϵ centered on x. For many distributions, the
pointwise dimension is independent of x. For those cases where it isn’t, we can
define a weighted average over all points:

Dp̄ =

∫
Dp(x) dp(x)

It is more practical, however, to average before taking the limit in 2.5. To this
end we define the correlation integral C(ϵ):

C(ϵ) =

∫
p(Bϵ(x)) dp(x)

And we define the correlation dimension as

Dc = lim
ϵ→0

lnC(ϵ)

ln ϵ

The usefulness of the correlation integral should become apparent from the

CHAPTER 2—DATA 18

following identities:

C(ϵ) =

∫
p (Bϵ(x))dp(x)

= E (p (Bϵ(X)))

= p (d(X, Y) ⩽ ϵ)

From top to bottom, the correlation integral represents the weighted average
probability over all balls with radius ϵ, which is equal to the expected probability
of a ball with radius ϵ centered on a random variable X distributed according to
p. The final line states that this is equivalent to the probability that the distance
between two points chosen randomly according to p, is less than or equal to
ϵ (because the ball Bϵ(X) is placed at a point chosen according to p, and Y

is distributed according to p, p (Bϵ(X)) is the probability that Y falls within a
distance of ϵ to X).

The main advantage of the correlation dimension is that it can be easily approx-
imated from data, and that it makes good use of that data. A dataset of n points
has (n2 − n)/2 distinct pairs with which to estimate p (d(X, Y) ⩽ ϵ), and the
approximation is quite simple. The process is further discussed in section 2.1.6

Since we rely on the (generalized) box counting dimension for our interpreta-
tion of these measurements, it’s important to know how the correlation dimen-
sion relates to it. The answer is that the correlation dimension is an approxima-
tion to D2.

To show why, we write the definition of D2:

D2 = lim
ϵ→0

I2(ϵ)

ln ϵ

This is the same as the definition of the correlation dimension, but with I2(ϵ)
taking the place of C(ϵ). So what we want to show, is that these two quantities
are alike in the limit. We rewrite I2:

I2(ϵ) =
∑
c∈Cϵ

p(c)2

=
∑
c∈Cϵ

p(c) lim
|X|→∞

|{x | x ∈ X, x ∈ c}|

|X|

Where X is a set with elements drawn independently from the distribution p,
and the numerator simply denotes the number of points in this set that fall in
c. The limit’s argument “|X| → ∞” denotes that we increase the size of X by
sampling more, so that |X| goes to infinity.

We can also write this as

I2(ϵ) = lim
|X|→∞

1
|X|

∑
x∈X

p(cϵ(x))

where cϵ(x) is the box in the ϵ-grid that contains x.

CHAPTER 2—DATA 19

If we assume that for small ϵ,

p (c(x)) ⋍ p (Bϵ(x)) (2.6)

then we can approximate I2 using balls of radius ϵ around the points in a
dataset:

I2(ϵ) ≈ lim
|X|→∞

1
|X|

∑
x∈X

p(Bϵ(x))

I2(ϵ) ≈ C(ϵ)

The move from cubes to balls in 2.6 can be justified by noting that the correla-
tion dimension does not change when we switch from the Euclidean distance to
the Chebyshev distance—in fact it is the same for all Lp norms (Theiler, 1990,
p. 1059). For two points x,y ∈ Rd, the Chebyshev distance is defined as

dt(x,y) = max
i∈(1,d)

|xi − yi|

When we use this as the distance between points, the notion of a ball centered at
point x, with radius ϵ is still defined as Bϵ(x) = {y|d(x,y) ⩽ ϵ}. The points that
form a ball under the taxicab distance actually form a cube under the Euclidean
distance, which tells us that the distinction between balls and cubes is moot.
When using the Chebyshev distance the only difference between I2(ϵ) and C(ϵ)
is that the former are aligned to a grid, and the latter are centered at data points.

For a generalized version of the correlation dimension (ie. for all values of q),
we refer the reader to (Theiler, 1990) and the references therein.

2.1.6 Measuring Dq

We can use the definitions of dimension that we have seen so far to estimate the
dimension of a probability distribution by a large sample of points drawn from
it. In all cases, we can assume without loss of generality that our finite dataset
X fits inside a bounding box [0, 1]d, because affine scaling will not affect the
dimension.

The box counting estimator

The most straightforward estimator is the box counting estimator. To estimate
D0 from a dataset X = {x1, . . . , xn}, we simply count N(ϵ) the number of boxes
in a grid with box-sidelength ϵ that contain one or more points in our dataset.
By the definition of box counting dimension:

D0 = lim
ϵ→0

lim
|X|→∞

lnN(ϵ)

ln ϵ−1

Where “|X| → ∞” indicates that the size of our dataset goes to infinity (ie. we
sample an infinite number of points). As mentioned in the previous section, this
relation means that if we plot Nϵ for a range of relatively small ϵ’s in log-log
axes, the data will form a straight line. The slope of this line represents the
dimension.

CHAPTER 2—DATA 20

A problem that occurs for all estimators is that in a finite dataset, the power law
only holds for a limited range of scales. Because our dataset is finite, the box
count will become constant for ϵ smaller than a certain value. At some point
each data point has its own box. There will also be a largest scale, above which
N(ϵ) will not follow the scaling law anymore, because our dataset is bounded.
In practice, this means that we must create the log-log plot and look for a range
in which the points follow a line. We then perform a linear least-squares fit on
the points within that range to find the slope.

To create an efficient implementation of the algorithm, we choose the values for
ϵ from 1, 1

2 , 1
4 , · · · , 1

2n . This has the convenience that each successive step di-
vides the previous boxes into precisely 2d boxes each, where d is the embedding
dimension.

The partitioning this creates in our space has a tree structure, where the whole
bounding box represents the root note, the first 2d boxes with ϵ = 1

2 represent
its children and they each have 2d children for the boxes with ϵ = 1

4 and so on,
down to some maximum depth n.

We can very quickly generate this tree in memory by iterating over all x ∈ X and
for each point calculate its index in the tree σ = {σ1, · · · ,σn}. This allows us to
create just that part of the tree that represents boxes with points in it. From this
tree we can get N(ϵ) for each ϵ. The algorithm we used is described in section
C.6. Further optimizations are described in (Traina Jr et al., 2000).

For different values of q, it is straightforward to maintain a count of the number
of points per box and find an estimate of Iq from the data.

The box counting estimator has the advantage of being fast, but it is known
for slow convergence, particularly for large dimensions and values of q below
one (Grassberger & Procaccia, 1983; Greenside et al., 1982; Theiler, 1990)).
Ironically, this means that the box counting estimator may be a poor choice for
estimating the box-counting dimension in many situations. It’s primary virtues
are that it can be implemented efficiently and it provides simple estimators for
arbitrary values of q.

The correlation integral estimator

To estimate D2 we can find an estimate of the correlation integral. We can
estimate the correlation integral simply as

C̄(ϵ) =
number of distinct pairs in the dataset with distance < ϵ

total number of distinct pairs

We again plot a range of values for ϵ against their correlation integrals in log-log
axes and find a line though the points.

More precisely, we define C̄(ϵ) as

C̄(ϵ) =
1

1
2 (|X|

2 − |X|)

|X|∑
i=1

|X|∑
j=i+1

[d(xi, xj) ⩽ ϵ]

CHAPTER 2—DATA 21

where [·] are Iverson brackets (representing 1 if the argument is true and 0
otherwise). We can approximate the limit on the right with a sufficiently large
dataset.

In some publications the sums are taken over all pairs, instead of all distinct
pairs. Besides being more computationally expensive, this introduces an unnec-
essary bias when points paired with themselves are counted. The idea behind
this estimate of the correlation integral is that

p (Bϵ(y)) ≈
1
|X|

∑
x∈X

[d(x,y) ⩽ ϵ]

Averaging this approximation over all points in the dataset leads to C̄(ϵ). But
when the point y for which we are approximating p(Bϵ(y)) appears in the
dataset, this introduces a bias, as our estimate will not go to zero with ϵ. To
avoid this bias we must exclude the center point from the dataset:

p (Bϵ(y)) ≈
1

|X/y|

∑
x∈X/y

[d(x,y) ⩽ ϵ]

The results section shows a small experiment to see the effect of the distinction.

The Takens estimator

The drawback of both the box counting and the correlation integral estimator is
the requirement of choosing a range of scales for which to calculate the slope.
Floris Takens derived an estimator which under certain assumptions is the max-
imum likelihood estimator of the correlation dimension and requires an upper
limit ϵ0 to the scales, but no further human intervention. (Takens, 1985; Chan
& Tong, 2001)

The first assumption is that the scaling law is exact. That is, for ϵ ⩽ ϵ0,
C(r) = c · ϵD, where c is a constant and D is the dimension. This is usually
not perfectly true for fractals, but as noted before, c is generally at least asymp-
totically constant.

We now define the set containing all distances between point pairs less than ϵ0:

A = {d(x,y) | x,y ∈ X, x ̸= y,d(x,y) ⩽ ϵ0}

The second assumption is that these distances are iid. If so their distribution
can be derived from the first assumption as

p (d ⩽ ϵ | d ⩽ ϵ0) =
p(d ⩽ ϵ)

p(d ⩽ ϵ0)
=

C(ϵ)

C(ϵ0)
=

cϵDt

cϵ0
Dt

=

(
ϵ

ϵ0

)Dt

Without loss of generality we can assume that the data has been scaled so that
ϵ0 = 1 (this can be achieved in the algorithm by dividing every distance by ϵ0).
We take the derivative of the probability function above to get the probability
density function for single distance values:

p(ϵ) = Dtϵ
Dt−1

CHAPTER 2—DATA 22

We can then find the log-likelihood of the data A with respect to the dimension:

l(Dt) =
∏
a∈A

Dta
Dt−1

ln l(Dt) =
∑
a∈A

lnDt + (Db − 1) lna

The derivate of the log likelihood is known as the score. Setting it to zero will
give us the maximum likelihood estimate of Dt:

d ln l(Dt)

dDt

=
|A|

Dt

+
∑
a∈A

lna

|A|

Dt

+
∑
a∈A

lna = 0

Dt = −
|A|∑

a∈A lna

Therefore, under the assumptions stated, the negative inverse of the average of
the logarithm of the distances below ϵ0 is a maximum likelihood estimator for
the correlation dimension. 5

Besides being a maximum likelihood estimator under reasonable assumptions,
the Takens estimator has the advantage of being defined in a sufficiently rig-
orous manner to determine its variance. For this and other statistical proper-
ties of the Takens estimator we refer the reader to the original paper (Takens,
1985), and the perhaps more accessible treatments in (Chan & Tong, 2001) and
(Theiler, 1990).

An additional advantage of the Takens estimator is that it can be largely evalu-
ated automatically. This allows us, for instance, to plot a graph of the dimension
estimate against some parameter at a high resolution (whereas with the other
estimators, we would have had to manually fit a slope through the data for each
value of the parameter). Another use would be to train an algorithm with a bias
towards a certain dimension, where the Takens estimator is calculated many
times during the training process. All that is required in these cases is a value of
ϵ0 that is reasonable for the whole range of measures we are considering. It has
been suggested that the mean of D plus one standard deviation is a reasonable
value for general cases. (Hein & Audibert, 2005)

An important drawback of the Takens estimator is the reliance on an exact scal-
ing law. The estimator will still work (though not optimally) when the pre-factor
is asymptotically constant. When the pre-factor oscillates (as it does with the
ternary cantor set) the Takens estimator has been reported to fail (Chan & Tong,
2001) (though in our experiments, the effect seems to be negligible compare to
other factors, see section 2.3.3).

5Note also that the choice of base of the logarithm is not arbitrary. For other bases than the
natural logarithm, the definition of the maximum likelihood estimator changes.

CHAPTER 2—DATA 23

2.1.7 The use of measuring dimension

At this point, a valid question to ask is what to do with a measurement of di-
mension. Why has so much attention been given to this subject in the literature?
What can we do with the results of all these experiments?

The original answer lies mostly in physics. As we have seen in chapter 1, the
field of dynamical systems often encounters fractals in the form of strange at-
tractors. The basic principle of physics requires that a theory makes measurable
predictions which can then be tested by taking measurements. For theories
that predict fractals, measurements become problematic, because most mea-
surements are based on Euclidean concepts such as length, area or volume.
Simply put, dimension is one of the few verifiable things a theory can predict
about a fractal. In cases where fractals are studied by physicists, the task of the
theorist is to predict a fractal dimension, and the task of the experimentalist is
to measure it.

A more statistical use of dimension measurement is the task of differentiating
between noise and structured data, specifically between chaos and noise. In
common parlance the words chaos and noise are often used interchangeably,
but in mathematics and physics they have specific and strictly different mean-
ings. Both are signals that appear ‘messy’, but where chaos differs is that a
chaotic high dimensional system is driven by a low-dimensional strange attrac-
tor, whereas noise tends to have a simple probability distribution with an integer
dimension equal to the embedding dimension. Measuring the dimension of data
can tell us whether we are dealing with chaos, noise, or a combination of the
two.

In the context of machine learning, measurements of dimension have been used
in dimensionality reduction. The fractal dimension of a point set can serve as an
important guideline in determining the optimal number of dimensions to choose
when applying dimensionality reduction. (Kumaraswamy, 2003; Traina Jr et al.,
2000)

2.2 Self similarity

The word fractal is not precisely defined. Mandelbrot, who coined the term,
originally defined fractals as sets whose Hausdorff dimension does not equal
their topological dimension (he later revised this, saying that he preferred to
think of the word as not precisely defined). Under this definition, we could
simply use one of the estimators above and show that many important natural
phenomena likely have a non-integer fractal dimension.

While this satisfies the letter of our thesis that there are naturally occurring
datasets6 that contain fractal structure, it neglects the spirit, which is that datasets
contains fractal structure that can be exploited in machine-learning scenarios.
For fractal structure to be exploitable, the datasets must be self-similar. Unfortu-

6In this text we often speak of ‘natural data’, or ‘naturally occurring datasets’. This simply means
non-synthetic data. Ie. data that is generated by an unknown process, which is relevant to some
real-world learning problem. It does not mean data that is necessarily confined to the domain of
nature.

CHAPTER 2—DATA 24

FIGURE 2.3: Three random walks (above) with normally distributed increments (below). A histogram of the
increments is plotted sideways. Each plot increases the timescale by a factor 100. Because the vertical axes are
rescaled by 1001/2 between plots, the graphs look statistically similar. (The vertical axes of the increment plots
are not rescaled between plots)

nately, very little research has been done into measuring the notion of self simi-
larity independent of dimension, and there is (to our knowledge) no method to
quantify exactly the level of self similarity in a set or measure.

What we can do, is look at ‘temporal’ self-similarity instead of ‘spatial’ self-
similarity. This is a phenomenon that has been studied in depth for a wide
variety of domains, like hydrology, geophysics and biology. It is used in the
analysis of time-series, which makes this section an excursion from the type of
data described in chapter 1, but a necessary one to show that self similarity does
occur abundantly in natural data.

Let xt be a series of measurements with xt ∈ R indexed by a finite set of val-
ues for t (which we will assume are equally spaced in time). For a thorough
investigation of time series it is usually necessary to model them as stochastic
processes, but for our light introduction we can forgo such rigor.

A simple time series is generated by a process called a random walk. At each
time t the value of x increases by a value drawn randomly from N(0, 1). Figure
2.3 shows some plots of this process over various timescales. Here, we can
see exactly why these processes are considered self similar. If we rescale the
time axis to a particular range in time, and rescale the vertical axis to the range
of the values within the timescale, the plots become statistically similar. The
process lacks an inherent scale. This type of process—and the related Brownian
motion, which is achieved by letting the number of timesteps go to infinity and
the variance of the increments to zero—are commonly used in fields like finance
to model the behavior of stock returns or price charts.

Since the random walk is such a simple model, it is also easy to predict opti-
mally. The value xt+n, n timesteps after some observed value xt, is normally
distributed with mean xt and variance n. This may not result in very precise
predictions, but under the assumption of a random walk with a particular dis-

CHAPTER 2—DATA 25

tribution for the increments, the prediction cannot be made any more specific.
Under this assumption, a market analyst might take a timeseries for say, the
price of cotton, estimate the distribution of the increments (assuming that they
are normally distributed) and based on the assumption that the increments are
drawn independently each time step, make a prediction of the range in which
the price will stay given its current position,with a given level of certainty. For
some timeseries, this method would prove disastrous. The first problem is that
the increments may not be distributed normally. There are many timeseries
where the distribution of the increments has a fat tail, which means that com-
pared to the Gaussian distributions, far more probability mass is located in the
tails of the distribution. In the Cauchy distribution, for instance, the tails fol-
low the now familiar power law. But even when the increments are distributed
normally, the assumption of a random walk can be fatal, because for some phe-
nomena the increments are not independent.

We can divide the timeseries with dependent increments into two classes. For
the persistent timeseries, a positive increment is likely to be followed by another
positive increment. For the anti-persistent timeseries, a positive change is more
likely to be followed by a negative change. Figure 2.4 shows three time series
with their increments. As we can see, the persistent timeseries is marked by
great peaks and deep valleys. For the market analyst and his random walk
assumption, events that should only occur once every millennium.

There is a specific property that can help us determine the level of persistence
in a time series, called the rescaled range. We will call the range R(a,b) of a
section of our timeseries a ⩽ t ⩽ b the difference between the maximum and
the minimum value after the trend (the straight line between xa and xb) has
been subtracted. We will call the sample standard deviation of the values in
our section S(a,b). For self-similar processes the rescaled range R(a,b)

S(a,b) has the
following property:

R(a,b)
S(a,b)

∼ (b− a)H

where H is known as the Hurst exponent, named for Harold Edwin Hurst, the
hydrologist who first described this principle in relation to the yearly flood levels
of the Nile. For H = 0.5, the increments are independent and the random walk
assumption is correct. For H > 0.5 the process is persistent, and for H < 0.5 the
process is anti-persistent.

The Hurst exponent is related to the Hausdorff dimension Dh of the timeseries
(or rather, the underlying stochastic process) by

Dh = 2 −H

At the heart of both persistence and self-similarity lies a principle known as
long dependence. To show this effect, we can compute the correlation of the
series’ increments against a time-lagged version of itself. This is known as the
autocorrelation. For processes with small increments, the autocorrelation for a
small timelag will be large, but the correlation will generally decay with the
time-lag. For some processes the decay will be so slow that it can be said never
to reach zero. These processes are persistent and have a Hurst exponent above

CHAPTER 2—DATA 26

FIGURE 2.4: Three timeseries of 1000 steps with increasing Hurst exponent. For each we have plotted the
timeseries (top), the increments (bottom) and the correlogram (right). The gray lines in the correlograms show
bounds for a confidence level of 0.05.

0.5. A plot of the correlation versus the lag is called a correlogram. Figure 2.4
shows correlograms for three timeseries of varying persistence.

The way to measure the Hurst exponent should sound familiar. We measure the
rescaled range for a variety of sections and plot the resulting values in log-log
axes. The slope of the resulting line gives us the Hurst exponent. This is pre-
cisely the method we used earlier to determine the dimension of sets and mea-
sures. As with the dimension, this method should only be taken as an estimator.
Many more have been devised since the Hurst exponent was first introduced
and all have their strengths and weaknesses. As with the dimension, measure-
ment of the Hurst exponent often means using many different estimators to
make sure the estimate is accurate.

Using the Hurst exponent, correlograms and other statistical methods, many
natural timeseries have been shown to be self-similar. For example, the number
of packets arriving at a node of a busy ethernet(Leland et al., 1994), biological
signals like the heartbeat (Meyer & Stiedl, 2003) or an EEG (Linkenkaer-Hansen

CHAPTER 2—DATA 27

et al., 2001), the human gait (Linkenkaer-Hansen et al., 2001), financial time-
series (Peters, 1994) and the yearly flood levels of rivers (Hurst et al., 1965;
Eltahir, 1996)

For a more complete and technical treatment of the subject of self-similar pro-
cesses, we refer the reader to (Embrechts & Maejima, 2002).

2.3 Dimension measurements

2.3.1 Correlation integral

FIGURE 2.5: A log-log plot for the two versions of the correlation integral. The dashed line shows the correct
slope (with a different offset). The black diamonds show the method of including all pairs, the red circles show
the method of only including distinct pairs.

Early treatments of the correlation integral have given its definition as

C ′(ϵ) = lim
|X|→∞

1
|X|2

|X|∑
i=0

|X|∑
j=0

u(d(xi, xj) − ϵ)

As we discussed, the following is more correct

C(ϵ) = lim
|X|→∞

1
|X|2 − |X|

|X|∑
i=0

|X|∑
j=i+1

u(d(xi, xj) − ϵ)

To show the importance of this difference, we used both methods on a set of
10 000 random points on the Sierpinski triangle, generated using the chaos
game. Figure 2.5 shows the results plotted in log-log axes.

The figure shows that both versions fit the same line, but for the smaller dis-
tances C ′ shows a deviation, while C along the correct slope. This means that
for C ′, the lowest points must be discarded to find the slope, whereas for C

all points can be used. Removing the 100 smallest points, we found a value of
1.497 using C ′, and 1.499 using C. Using all points,we found 1.496 using C ′

and 1.540 using C.

In addition to the increase in accuracy and usable datapoints, using only distinct
pairs and eliminating points paired with themselves also leads a drop of more
than 50% in the number of pairs that need to be evaluated.

2.3.2 The box counting and correlation integral estimators

× Size E CI BC HD
Sierpinski
Triangle

30000 2 1.57 1.53 log 3
log 2 ≈ 1.585

Koch 30000 2 1.28 1.15 log 4
log 3 ≈ 1.26

Cantor 30000 2 0.53 0.6 log 2
log 3 ≈ 0.63

Population 20000 2 1.47 1.73 ×
Road Inter-
sections

27282 2 1.76 1.73 ×

Basketball 19112 18 2.52 2.37 ×
Galaxies 5642 3 2.12 1.98 ×
Sunspots 2820 1 0.92 0.88 ×
Currency 4774 2 1.63 1.85 ×

TABLE 2.1: The results of measuring the dimension of various point sets. Size describes the number of points in
the dataset. E refers to the embedding dimension, that is, the dimension in which the points are represented. CI
refers to the dimension as measured by the Correlation Integral method. BC is the Box Counting method. HD
refers to the Hausdorff dimension, an analytically derived value that can be regarded as correct. The datasets are
described in appendix B

2.3.3 The Takens estimator

For the Takens estimator we can plot the estimate against a range of values for
the parameter ϵ0. For datasets with known dimension we can plot the error of
the estimate. The results are shown in figure 2.6.

Plots for datasets with unknown dimension are shown in 2.7.

CHAPTER 2—DATA 29

FIGURE 2.6: Plots of the error of the takens estimator against it parameter ϵ0. The top plot shows the error of
three common fractals (scaled to fit the bi-unit square). The middle plot shows the error for a uniform distribution
over (−1, 1)n. The final plot show the error for the examples of fractional brownian motion with varying Hurst
exponents. The top two plots were made with 10000 points each, the bottom plot with 2000 points per dataset.
The three plots in the top experiments all have strong lacunarity. As these plots show, this causes some error, but
the influence of dimension is much greater. For prints without color, the order of items in the legend is the same
as the order of the graphs at ϵ0 = 0.7.

CHAPTER 2—DATA 30

FIGURE 2.7: Dimension estimates using the takens estimator, for varying values of ϵ0. Datasets of size larger than
10000 we reduced to 10000 points by random sampling (with replacement). For prints without color, the order
of items in the legend is the same as the order of the graphs at ϵ0 = 0.7.

CHAPTER 3 · DENSITY ESTIMATION
In this chapter, we analyze the problem of density estimation from a fractal
perspective. We first give a more rigorous explanation of the iterated function
system concept, described in section 1.0.1, and its use in modeling measures as
well as sets. We introduce methods for learning such models to represent a given
set, and compare it to the commonly used Gaussian mixture model.

As we saw in chapter 1, we can create fractals by taking an initial image, com-
bining several (contractively) transformed versions of it to create a new image,
and repeating the process. The limit of this iteration is a fractal set. Fractals
created in this way are called Iterated Function Systems. Examples of fractals
which can be generated with this method are the Sierpinski triangle, the Koch
curve and the Cantor set. We will define iterated function systems and their
properties more precisely. The proofs for the properties described here can be
found in (Hutchinson, 2000) (as well as many others).

We will define the IFS concept first for sets in Rd.1We will then generalize to
(probability) measures over Rd. Finally, in chapter 5, we will discuss an exten-
sion of the model known as random iterated function systems.

3.1 The model: iterated function systems

3.1.1 IFS sets

Iterated function systems are usually presented by their construction, as above
and in the first chapter. To define them mathematically, however, it makes more
sense to base our definition on the concept of a scaling law.

Call a function F : Rd → Rd a map, and let F(X) be the set of points constructed
by applying the transformation to all points in the set X (with X ⊂ Rd).

A set of k maps S = ⟨S1, · · · ,Sk⟩ defines a scaling law. We say that a set K

satisfies the scaling law iff:

K = S1(K) ∪ S2(K) ∪ . . . ∪ Sk(K)

That is, the set is exactly made up of small transformed copies of itself. We will
call the maps Si the components of the scaling law.

It can be shown that for a given scaling law, if all components Si are contractive,
there is a unique set which satisfies the scaling law. The reverse is not true. One
set may satisfy several different scaling laws. The Koch curve, for instance, can
be described by a scaling law of four transformations, and a scaling law of two
transformations.

1The definition can be generalized to metric spaces.

CHAPTER 3—DENSITY ESTIMATION 32

We can also treat S as a map itself, so that for any X ⊂ Rn

S(X) = S1(X) ∪ S2(X) ∪ . . . ∪ Sk(X)

We can iterate S, so that Xn+1 = S(Xn), with some initial set X0 called the initial
image. We can also write this iteration of a functions as Sn+1(X) = S (Sn(X))
with S0(X) = S(X).

A second fundamental property of iterated function systems is that for any
nonempty initial image X0, the iteration will converge to the single unique set
K, which satisfies the scaling law:

lim
m→∞Sm(X0) = K

for any X0 ̸= ∅ with
S(K) =

⋃
i∈(1,k)

Si(K)

3.1.2 Parameter space and code space

If we select the components for a scaling law from a specific family, we can often
represent them as a vector in some Rm. For instance, if we limit ourselves to
affine maps—maps that can be represented by a transformation matrix and a
translation vector—we can represent each Si as a vector in Rd2+d. A complete
scaling law composed of k transformations can then be represented as a vector
in Rm with m = k(d2 + d). We will call Rm parameter space. It will become
useful when we search for a particular scaling law to fit given data.

Let σ be a sequence σ = ⟨σ1,σ2, · · · ,σq⟩, with σi ∈ (1,k). Let Sσ represent the
composition of the components denoted by σ: Sσ = Sσ1 ◦Sσ2 ◦· · ·◦Sσq

. Since all
components Si are contractive, it’s easy to see that as q → ∞, diam (Sσ(K)) →
0. This means that every point in S’s limit set is denoted by an infinite sequence
σ (though not necessarily by a unique one).

3.1.3 IFS measures

Ultimately, the modeling of sets isn’t very interesting in machine learning. A
more relevant task would be modeling probability measures. Luckily, the IFS
concept has been extended to measures as well. As with the sets in the previous
section, we will let S be a set of k functions from Rd to Rd.

We will extend the concept of a map to accept a measure v as an argument:

(F(v))(X) = v(F−1(X))

That is, if v is a probability measure, F(v) is also a probability measure, which
assigns the same mass to X as v would assign to F−1(X).

This allows a straightforward extension of the IFS concept to measures. A mea-
sure v satisfies the scaling law S iff

v = S1(v) + S2(v) + . . . + Sk(v)

CHAPTER 3—DENSITY ESTIMATION 33

If we wish to use probability measures, we must make sure that the total mass
over Rd remains 1. For this purpose we introduce to the scaling law k weights
ρi ∈ (0, 1), with the additional constraint

∑
ρi = 1. A probability measure p is

said to satisfy a scaling law of this type iff:

p =
∑

i∈(1,k)

ρiSi(p)

As with IFS Sets, each scaling law can be used as a function, in this case a
function of a measure.

S(v) =
∑

i∈(1,k)

ρiSi(v)

The same results hold for IFS measures as do for IFS sets. For a given scaling
law over measures with contractive components, there is a unique measure k

which satisfies the scaling law.

If v0 is an initial measure whose support is compact (ie. closed and bounded)
and nonempty, then the iteration Sm will converge to k regardless of the initial
measure:

lim
m→∞ = Sm(v0) = k

where k is the unique measure satisfying the scaling law.

Generating random points

If the initial measure is a probability measure, then so is the resulting fractal
measure. We can draw points from this probability distribution in two ways.

First, we can draw a point x0 from some initial distribution (with compact 2

measure). We draw a random function Sr0 from the probabilities suggested by
ρ1, . . . , ρk and let x1 = Sr0(x0). We repeat this process n times, so that xn =
Srn−1(xn−1). As n goes to infinity the probability distribution of xn converges
to S’s limit set. Practically, n = 5 is already enough for many applications. The
process works for certain non-compact initial distributions as well (for instance,
a multivariate Gaussian distribution).

To generate a large set of points drawn independently from the limit of S we
need not draw each point by the method described above. We can use the chaos
game described in chapter 1. Start with some initial point x0 and generate a
sequence of points by the same method described above. It can be shown that
after some finite initial number of points (usually 50 is enough) the sequence of
points behaves as though the points are drawn iid from the IFS’s limit measure.

3.2 Learning IFS measures

The task at hand is to find a probability measure pθ(x), defined by the param-
eters θ, which is somehow a good model for a given datasets X = ⟨x1, . . . , xr⟩,
with xi ∈ Rn. To approach this problem we need to define three things: a fit-
ness function to determine which of two models is the best, a representation of

2Closed and bounded.

CHAPTER 3—DENSITY ESTIMATION 34

IFS probability distribution (ie. what does θ look like) and a way to search the
parameter space for models with a high fitness. We will discuss each of these
components individually.

3.2.1 The fitness function

The most common way of determining how well a probability model pθ fits a
given collection of points is to measure the likelihood of the data, given the
model. If the points are independently drawn and identically distributed (as we
assume they are) the likelihood function of a dataset X is simply given by:

lX(θ) =
∏
x∈X

pθ(x)

The likelihood function works well as a fitness function in many learning con-
texts where the parameters are gradually changed to slowly find a better and
better model. However, a problem emerges when the probability distributions
under consideration are not continuous. Consider for instance the family of
probability distributions over Rd that only afford a single point θ ∈ Rd any
probability density. All other points have zero probability density. Clearly, for a
dataset consisting of only a single point x, the maximum likelihood model has
θ = x. However no gradual learning algorithm, like hill climbing, will find these
parameters, since any gradual change to a given hypothesis θ ̸= x will yield a
likelihood of zero, unless the algorithm stumbles on θ = x by pure chance. In
other words, the fitness landscape has no smooth gradient.

This is a problem for our family of IFS probability models as well. Not only can
they be highly discontinuous, but a small change in parameters can cause all
points of non-zero density to shift away from the dataset, even if the change
is towards the optimal model. What is needed is a fitness function that relates
points in the dataset to regions with high probability (under pθ) by their dis-
tance, so that moving towards regions of high probability will count towards the
model’s fitness even if the actual likelihood of the data doesn’t increase. For this
purpose we shall use one of the most commonly used tools in fractal geometry,
the Hausdorff distance.

The Hausdorff distance between two point sets X and Y is defined as

dH(X, Y) = max
[

max
x∈X

min
y∈Y

d(x,y), max
y∈Y

min
x∈X

d(x,y)
]

3 Imagine a game where we must travel from one set to the other in as short a
distance as possible, and a malevolent second player chooses our starting point.
The Hausdorff distance will be the distance we travel.

We use the Hausdorff distance to evaluate our models by generating a set of
random points from the model under consideration and calculating the Haus-
dorff distance to the dataset. Since the algorithm to calculate the Hausdorff
distance is quite slow, and the dataset will often contain in the order of 10 000
points, we will use a subsample of the dataset (drawn with replacement).

3For non-finite sets max and min are replaced by sup and inf respectively. In our case this isn’t
necessary.

CHAPTER 3—DENSITY ESTIMATION 35

Because the use of Hausdorff distance as a statistical fitness function seems to
be unexplored, we investigate more deeply in appendix D.

3.2.2 Representation of the model

To define an IFS probability model in d dimensions, we need two elements. A
set of k transformations {Si} and a set of k prior probabilities {ρi} that sum to
one.

We want our model to be expressible as a vector θ in some Rm. We can easily
represent each prior probability as an element of θ, but we must ensure that
they sum to one and fall in the interval (0, 1). If the first k elements of θ are
used to represent the prior probabilities, then we get ρi as

ρi =
|θi|∑

j∈(1,k) |θj|

For the transformations, we will limit ourselves to affine transformations. The
easiest way to represent these is as a d×d transformation matrix R and a d-sized
translation vector t, so that the transformation Si becomes Si(x) = Rix+ti. This
allows us to model each transformation in d2 + d real values, giving us a total
of kd2 + kd + k parameters for the full model. We will call this the simple
representation.

The main problem with the simple parameter mode is that it combines several
distinct operations into a single set of parameters: the transformation matrix
combines scaling, rotation and shearing and folds them into d2 parameters in
a complicated way. Since learning will likely benefit from being able to ad-
just the parameters for these elementary operations independently, we define
an additional parameter mode where they are separated. We split the affine
transformation into a scaling vector s of size n, a set α of 1

2n
2 − 1

2n angles
and a translation vector t of size n. The full transformation is then defined
as Si(x) = Rαi

diag(si)x + ti, where Rαi
is the rotation matrix defined by αi

(an algorithm for constructing this matrix is given in appendix C) and diag(si)
represents a matrix with si at the diagonal and zero everywhere else. This
construction defines a subset of the total set of affine transformations (skewing
cannot be represented), but has the advantage of using fewer parameters for the
full model (k(0.5n2 +1.5n+1)). We will refer to this as the TSR representation
(for scaling, translation, rotation).

For certain purposes, it helps to only allow uniform scaling. This makes each
component of the model a similitude (ie. all distances are scaled by a unique
factor under the transformation). This type of representation requires only
k(0.5n2 + 0.5n + 2) parameters to represent. Its main advantage is that for
models like these, the dimension is well-defined. We will call this the similitude
representation.

Alternate model: mixture of Gaussians

To give an idea of its performance in describing the dataset, we compare the
iterated function systems to the mixture-of-Gaussians (MOG) model. The MOG

CHAPTER 3—DENSITY ESTIMATION 36

model describes a probability measure as the sum of a number of multivariate
Gaussian distributions. If we have a model with k components, we describe
each model by its mean µi, its covariance Σi, and a prior probability ρi (so that
all priors sum to one). The probability density of a point under this distribution
is then

p(x) =
∑

i∈(1,k)

ρiNd(x | µi,Σi)

Where Nd represents the d-dimensional Gaussian with the given parameters.

The great advantage of comparing IFS models against MOG models, is that we
can make the description the same. It can be shown that any affine transfor-
mation of a multivariate Gaussian, is itself a multivariate Gaussian. This means
that we can encode the components of a MOG model in a very natural way, as
an affine transformation of the standard Gaussian (µ at the origin and Σ = Id).
If the affine transformation is represented as a transformation matrix R and a
translation vector t, then the Gaussian has µ = t and Σ = RRT .

Since this is the exact same way we represent our IFS models (k affine transfor-
mations with k priors) we can keep everything else (learning algorithm, fitness
functions) the same and have a fair comparison.

3.2.3 Learning

Evolution strategies

The main learning algorithm used is known as evolution strategies. We use a
specific subset of the full range of possible algorithms. For a more complete
introduction, see (Beyer & Schwefel, 2002) and (Schwefel & Rudolph, 1995).

It is one of a family of models inspired by genetic evolution. The algorithm op-
erates on a collection of models known as the population. Every generation, the
worst models are discarded and a new population is created from the remain-
ing models, by a process of recombination and mutation. After continuing this
process for many generations, the population will (likely) converge to a model
that provides a good fit for for the data.

the population The population consists of v models. Each model in the pop-
ulation is defined by a vector θ ∈ Rm as described above. In addition to
these model parameters, each model contains a set of strategy parameters
σ, used in the mutation.

Each model’s fitness is determined as described above. The top u models
are retained, and v − u new models are created to restore the population
to its original size.

recombination We use the method of uniform recombination. For each child
to be created, z parents are chosen at random from the remaining models.
Each parameter in the child (both the model and strategy parameters) is
then chosen at random from one of the parents.

mutation Mutation is the process that drives learning. The idea is to slightly
change the parameters of the child after it is created, so that models can

CHAPTER 3—DENSITY ESTIMATION 37

slowly converge to a better fit.

The strategy parameters determine the mutation of the model parameters.
They are split up into an m dimensional scaling vector sσ and an 1

2m
2− 1

2m

set of angles (Where m is the length of the model parameters), which are
converted to an m × m rotation matrix Rσ (see C.4). These define a
multivariate Gaussian distribution from which a vector is drawn (if X ∼

N(0, I), then R · diag(s) · X has the required distribution). This vector is
then added to the child’s model parameters.

The child’s strategy parameters are also mutated. To each of the angles
a random value is added, drawn (for every parameter) from N(0, τ). To
each of the scaling parameters a value is added that is drawn from N(0,υ).
υ can be regarded as the convergence speed; increasing it will cause the
algorithm to converge faster, but may cause it to overshoot some values,
and it may limit how closely the algorithm can converge to an optimal so-
lution. Decreasing υ will increase the number of generations required to
find a solution, and will decrease the likelihood that the algorithm will es-
cape local optima. (Schwefel & Rudolph, 1995) gives an elaborate method
for determining υ (from a new parameter), but we had better results with-
out this method (possibly due to implementation errors).

A few notes on this process:

• Per generation the fitness is only calculated once per model. For the next
generation, however, we recalculate the fitness, because we calculate it on
a random subsample of the data. This way, a model that was lucky in the
current generation, in the sense that many well fitting points were chosen
from the data, will have to prove itself again in the next generation.

• The order of mutating the strategy parameters and mutating the model
parameters has no effect on performance.

3.3 Results

3.3.1 Comparison to mixture of Gaussians

We trained models for various datasets with 2 to 6 components, training for
1000 generations, taking the best model of the final generation as the result.
Table 3.2 shows the result for the optimum number of models. We used the
same approach to learn a mixture-of-Gaussians model. The MOG models were
trained using both the log-likelihood and the Hausdorff distance as a fitness
function. We report both the resulting Hausdorff distance and the log likelihood.

Some notes on the experiment:

• Both models were trained using evolution strategies, using the same rep-
resentation of n affine transformations with a prior probability for each.
For the affine transformations, the TSR representation was used. Both
versions were trained for 4000 generations.

CHAPTER 3—DENSITY ESTIMATION 38

similitude tsr straight
d 1

2d
2 + 1

2d
1
2d

2 + 3
2d d2 + d

Three 2 0.15 0.13 0.14
Sierpinski 2 0.13 0.15 0.18
Koch 2 0.05 0.10 0.06
Cantor 2 0.01 0.02 0.02
Sunspots 1 0.10 0.21 0.51
Population 2 0.63 0.12 0.49
Road intersections 2 0.30 0.34 0.30
Basketball 18 1.82 2.17 1.73
Galaxies 3 0.43 0.44 0.47
Currency 8 0.71 0.98 0.78

TABLE 3.1: Results for an experiment comparing the three parameter modes. In each experiment, models with
four components were trained for the various datasets.

• The IFS transformations were trained with the Hausdorff distance as a
fitness measure, using a sample of 250 points from the dataset and the
model. A third model was the MOG model with log-likelihood as a fitness
function.

• The MOG models were trained with log likelihood as a fitness function
(again on a sample of 250 points). It may seem obvious that each model
performs better on its own fitness measure, but the MOG models per-
formed no better on the Hausdorff distance when trained with it as a fit-
ness measure. The log likelihood was chosen as a fitness measure because
it seems to provide better results.

• The results reported were derived from a test set of 10% of points withheld
from the total set. The full set was used to measure the log likelihood.
1000 random points were samples from the test set with replacement to
find the Hausdorff distance (to 1000 points generated from the best model
at the final generation).

• For the currency and basketball datasets, the rotation angles in the strat-
egy parameters were removed to speed up the algorithm in this and all
other experiments.

• The results show positive log-likelihood for some experiments. This may
seem impossible as a probability value must be below 1, and thus its log-
arithm must be negative. However, since we’re dealing with probability
density values, positive log-likelihoods are quite possible.

3.3.2 Model representation

This experiment tests which parameter representation is most successful (see
section 3.2.2). Each mode uses a different number of parameters. Fewer pa-
rameters make it easier for the model to find a good solution, but they also
reduce the number of allowed solutions. The results are shown in table ??.

CHAPTER 3—DENSITY ESTIMATION 39

HD LL
ifshd moghd mogll ifshd moghd mogll

Three 0.20 0.38 0.51 −1503185 −305798 24303
Sierpinski 0.24 0.33 0.74 −51480 −43885 −34648
Koch 0.05 0.19 0.92 7419 −32813 −858
Cantor 0.01 0.11 0.87 −∞ −234362 183961
Sunspots 0.20 0.33 0.29 −992 −3297 −654
Population 0.17 0.24 0.43 3842 −32132 14299
Road intersections 0.24 0.32 0.45 −21291 −28675 −14972
Basketball 1.54 1.98 4.19 −∞ −∞ −∞
Galaxies 0.47 0.49 1.25 −11689 −8451 −7114
Currency 0.67 0.73 2.15 −∞ −∞ −∞

(A) 2 components

HD LL
ifshd moghd mogll ifshd moghd mogll

Three 0.14 0.79 0.74 −∞ −58048 23179
Sierpinski 0.13 0.35 0.95 −19691 −49414 −26764
Koch 0.09 0.15 0.38 23586 −54437 5078
Cantor 0.01 0.12 1.00 −∞ −60682 145415
Sunspots 0.15 0.35 0.12 −7390 −2980 −416
Population 0.16 0.73 0.61 −7098 7484 14679
Road intersections 0.22 0.30 0.58 −37210 −35003 −15392
Basketball 1.36 1.62 4.20 −∞ −∞ −∞
Galaxies 0.45 0.49 0.98 −9611 −8963 −6780
Currency 0.69 0.71 2.37 −∞ −∞ −∞

(B) 3 components

HD LL
ifshd moghd mogll ifshd moghd mogll

Three 0.11 0.11 0.15 −∞ 22187 54793
Sierpinski 0.15 0.31 0.56 −18162 −53087 −25938
Koch 0.10 0.17 1.24 −669189 −48564 6917
Cantor 0.01 0.13 0.80 −∞ −6418 132780
Sunspots 0.12 0.29 0.27 −7888 −4262 −456
Population 0.28 0.41 0.61 −55502 −24219 15179
Road intersections 0.22 0.28 1.30 −32236 −36522 −15294
Basketball 1.33 2.09 4.21 −∞ −∞ −∞
Galaxies 0.47 0.66 0.84 −22009 −9732 −6960
Currency 0.68 0.69 2.25 −∞ −∞ −∞

(C) 4 components

HD LL
ifshd moghd mogll ifshd moghd mogll

Three 0.09 0.12 1.20 −∞ 32382 19602
Sierpinski 0.17 0.25 0.97 −20494 −54459 −25763
Koch 0.08 0.12 0.45 −191268 −74447 9010
Cantor 0.02 0.05 1.36 −∞ −570 118131
Sunspots 0.26 0.17 0.20 −1186 −1294 −407
Population 0.76 0.27 0.34 −3936 −10541 15176
Road intersections 0.27 0.26 0.33 −37940 −24158 −17484
Basketball 1.37 1.49 4.20 −∞ −∞ −∞
Galaxies 0.41 0.52 0.81 −21080 −8900 −6923
Currency 0.52 0.70 2.13 −101244 −∞

(D) 5 components

TABLE 3.2: Approximating various datasets with IFS and MOG models.

CHAPTER 3—DENSITY ESTIMATION 40

E d 2 3 4 5
Three 2 2.00 1.19 0.62 0.66 0.73
Sierpinski 2 1.58 1.52 1.38 1.63 1.47
Koch 2 1.26 1.12 1.27 1.20 1.31
Cantor 2 0.63 0.63 0.65 0.67 0.72
Population 2 1.73 1.35 1.32 1.35 1.48
Road intersections 2 1.73 1.80 1.46 1.67 1.96
Basketball 18 2.37 1.42 1.03 2.24 1.60
Galaxies 3 1.98 3.79 3.99 3.16 3.24
Currency 8 1.85 1.46 1.44 1.65 2.01

TABLE 3.3: Dimensions of models learned (using the TSR parameter mode and varying numbers of components)
for datasets. The first two columns show the dataset’s embedding dimension (E) and the best estimate we have
for the Hausdorff dimension (d). The other columns show the scaling dimension of the learned model.

3.3.3 Dimension of the models

To test the assertion made in chapter 1, that fractal models are capable of vary-
ing their intrinsic dimension, we perform we following experiment. We replace
the scaling vector of each model by a single scaling value. This makes each com-
ponent transformation, now represented by a scalar, a translation vector and a
rotation matrix, a similitude. In short, each pair of points is mapped to a second
pair of points so that the distance between the two is always scaled by a fixed
value ri (for component Si). The advantage of knowing that our model is made
up of similitudes is that we know that the scaling dimension ds of the model is
defined by the following equation:

k∑
i=1

rds

i = 1

Which can be solved numerically. We say that an IFS satisfies the open set con-
dition if there exists a non-empty open set O ⊆ Rn such that

k⋃
i=1

Si(O) ⊆ O

Si(O) ∩ Sj(O) = ∅ if i ̸= j

If the IFS satisfies the open set condition the scaling dimension is equal to the
Hausdorff dimension.

Table ?? shows the dimensions of the best IFS models after training for 4000
generations.

CHAPTER 3—DENSITY ESTIMATION 41

3.4 Gallery

Figures 3.1 – 3.4 provide a selection of the images generated in the experiments
shown above.

(A) (B) (C)

FIGURE 3.1: Three approximations of synthetic datasets: (3.1a) a 2-component approximation of the Sierpinski
triangle, (3.1b): a 5-components approximation of the ‘three’ dataset and (3.1c) a 2-component approximation of
the Koch curve

(A) (B) (C)

FIGURE 3.2: MOG and IFS models after 1000 generations of training with 4 components for the population
dataset: (3.2a) the dataset, (3.2b): the MOG model trained with log-likelihood as a fitness function (3.2c) the IFS
model, trained with Hausdorff distance as a fitness function.

CHAPTER 3—DENSITY ESTIMATION 42

(A) (B) (C)

FIGURE 3.3: MOG and IFS models after 1000 generations of training with 4 components for the road intersection
dataset: (3.3a) the dataset, (3.3b): the MOG model trained with log-likelihood as a fitness function (3.3c) the IFS
model, trained with Hausdorff distance as a fitness function.

(A) (B) (C)

FIGURE 3.4: MOG and IFS models after 1000 generations of training with 4 components for the galaxies dataset:
(3.4a) the dataset, (3.4b): the MOG model trained with log-likelihood as a fitness function (3.4c) the IFS model,
trained with Hausdorff distance as a fitness function. (The levels of these images were adjusted to make the detail
more visible.)

3.5 Extensions

This section provides some additional ideas and methods for working with IFS
models.

3.5.1 Using the model

Once we have learned our model, which hopefully fits the data well, we will
want to use it in some setting, to analyze properties of unseen points. Since
we learned the model using a fitness measure based on the Euclidean distance,
it makes sense to use the point-set distance from the unseen point to a set
randomly drawn from the learned measure to approximate how much a point
‘belongs’ to the set. In some cases, however we are simply interested in the
probability density of a point or the probability of a region under the measure
we’ve learned. This becomes particularly relevant when we use the IFS models
to build classifiers in chapter 4.

Call the result of our learning the probability measure p. If we want to know the
probability density of point x, p(x), we will need to iterate the model. Recall

that we can generate p by starting with some initial measure, and iteratively
applying its scaling law Sp. Call p0 the initial image. We will use the (multivari-
ate) standard normal distribution as our initial image: p0(x) = N(x | 0, I). After
one iteration of Sp, the probability density of x will be a weighted combination
of the probability densities of x under p0 transformed by S

p
i :

p1(x) =

k∑
i=0

ρi(Si
p(p0))(x)

Or more generally,

pn+1(x) =

k∑
i=0

ρi(S
p
i (p

n))(x) (3.1)

The limit of this iteration gives our probability density, but for practical purposes
the value often becomes usable after as little as 5 iterations. The reason for
choosing a standard normal distribution as p0 is that a Gaussian distribution
under an affine transformation becomes another Gaussian distribution. This
means that at every step of the iteration pn(x) can be calculated directly.

If we want to calculate the probability of a region A under our measure, we can
apply the same logic. To approximate 3.1 for regions, we need a way to calculate
the probability of a region under a given Gaussian. A method for ellipsoids of
arbitrary dimension is given in C.2. This method is necessarily numerical, so
that a number of samples need to be taken to get an accurate estimate. The
advantage of our model is that as the iteration goes deeper, fewer samples are
needed, so that at an iteration depth above 5, a single sample per estimation of
pn(A) can suffice.

CHAPTER 4 · CLASSIFICATION
This chapter investigates the use of fractal models in classification. It builds
on the analogue of density models described in the previous chapter, to create
a similar analogue to a Bayesian classifier. We also investigate the behavior of
some commonly used classification algorithms on simple fractal data.

4.1 Experiments with popular classifiers

In this section, we try to learn the Newton fractal and the Mandelbrot set using
common classification algorithms.

The training set for each was created by drawing 100 000 random points uni-
formly from an enclosing rectangle, and letting the iteration run far enough to
approximate the class. In the case of the Newton fractal each of the three so-
lutions represents a class. For the Mandelbrot set, points in the Mandelbrot set
are assigned one class, points outside it the other.

We test each algorithms in three ways:

Error This is the straightforward ratio of misclassified points, tested on a sec-
ond set of 100 000 random points.

MDL ratio This measures how well the model compresses the test set. Ideally,
this is the ratio of the dataset represented by the model (including the
exceptions required to correct the model’s errors) to the size of the dataset
represented normally.

A full MDL treatment of the performance of these algorithms is slightly
beyond the scope of this section. As the intention of these experiments is
more to provide an intuition for the behavior of common learning meth-
ods, rather than prove anything conclusively, we use the following imper-
fect method to give a reasonable idea of the MDL ratio: We take the model
M in some representation, the class vector of the dataset V and the same
vector with the datapoints that the model classified correctly set to zero,
Ve. We then calculate the MDL ratio as:

z(M) + z(Ve)

z(V)

Where z(·) is a general-purpose compression function (in our case, java’s
GZIP implementation). The idea here is that M and Ve are sufficient to
reconstruct the data, and therefore equivalent to V in terms of information
content. Note that we are only considering the class-vector and not the
instances themselves. The implementations used are those provided by
the WEKA machine learning library. The model’s toString() method is
taken as a representation of the model (except in the case of the kNN

CHAPTER 4—CLASSIFICATION 46

classifier where we use the dataset itself). As noted, this methodology has
its flaws, but we will assume that the resulting measurements are at least
sufficiently accurate to give a general idea of the MDL performance.

Visual inspection Because our dataset has two numeric features we can plot
the model in two dimensions and inspect its behavior. To create these im-
ages, the domain was partitioned into pixels. For each pixel, we took the
point at its center and used the model to classify that point. We then col-
ored the pixel according to its class, using arbitrary colors for the classes.

A second image was also generated, ‘zooming in’ on a particular region of
the domain, using the same resolution as the first image. For the Newton
fractal, the zoomed images represents the domain x,y ∈ (−0.25, 0.25),
for the Mandelbrot set we use x ∈ (−1.0,−0.5) and y ∈ (−0.5, 0).

4.1.1 Overview

× Newton Mandelbrot
× error MDL error MDL
k-Nearest Neighbours 0.033 1.221 0.006 1.184
Naive Bayes 0.240 0.831 0.168 0.845
Ada Boost 0.458 0.846 0.087 0.788
C4.5 (unpruned) 0.033 0.644 0.009 0.356
C4.5 (pruned) 0.033 0.618 0.009 0.353
MLP, 5 nodes 0.125 0.571 0.037 0.426
MLP, 10 nodes 0.105 0.529 0.026 0.366
MLP, 50 nodes 0.130 0.708 0.024 0.490
MLP, 2 layers 0.152 0.713 0.026 0.366

CHAPTER 4—CLASSIFICATION 47

4.1.2 k-Nearest neighbours

The classifiers were trained with the parameter k = 7.

Unsurprisingly, the models look good at a large scale, and deteriorate upon
zooming in. For a dataset this size, KNN is a well-performing—if slow—algorithm.
KNN of course generalizes very little at all. It is however one of the few algo-
rithms that naturally maintains the fractal structure of the data.

4.1.3 Naive Bayes

This is a straightforward model, using a single one-dimensional normal distri-
bution per feature as a posterior class distribution. Naive Bayes serves as an
example of a very smooth model, with a small representation.

4.1.4 Adaboost

We trained a boosted classifier with decision stumps, training 25 stumps. The
reweighting of the dataset performed in boosting is relevant to our problem,

CHAPTER 4—CLASSIFICATION 48

as it allows regions of high complexity to receive greater attention. In other
words, a boosting classifier can approximate a fractal with a succession of
smooth classifiers, much like fractals are often are generated by starting with a
Euclidean shape and removing, adding or modifying increasingly detailed Eu-
clidean shapes.

Unfortunately, the simple voting mechanism used by adaboost after training
makes it impossible for the classifier to be exploited in this way.

4.1.5 C4.5

The C4.5 decision tree algorithm shows a great deal of promise. While its be-
havior is similar to that of KNN in that it increases its model size to deal with
increasing complexity, it does a better job of generalizing (in an MDL sense). We
still cannot expect C4.5 to generalize across scales (ie. display detail at smaller
scales that the data provides for) but the translation from flat data to a decision
tree may serve as a stepping stone to new algorithms.

pruned unpruned

CHAPTER 4—CLASSIFICATION 49

4.1.6 Neural networks

Each network has two input nodes, a single layer of 5, 10 or 50 hidden nodes
and output nodes represented the target classes (two for the Mandelbrot task,
three for the Newton task). All networks were trained for 10000 epochs.

The hidden layers have a sigmoidal activation function, the output layers have
linear activations

5 nodes 10 nodes 50 nodes

CHAPTER 4—CLASSIFICATION 50

4.2 Using IFS models for classification

In the previous chapter we found that we can reliably train well-fitting IFS mod-
els for a given datasets. Compared to Gaussian mixture models, these models
fit well (by the Hausdorff distance fitness measure). We will first describe how
to construct a simple Bayesian classifier from the rival MOG model, and then
we will adapt this method for our IFS density models.

4.2.1 A Bayesian classifier with MOG models

We are faced with the following problem: we have a set X of points xi ∈ Rd,
where each xi has an associated class ci ∈ {C1, . . . ,Cq}. We want to construct a
model that can predict the class for unseen points.

To build a Bayesian classifier, we want to estimate the probability of a certain
class, given the point x to be classified: p(c | x). The class for which this
probability is the highest, is our class prediction ĉ. We use Bayes’ theorem to
rewrite this:

ĉ = arg max
c∈C

p(c | x)

ĉ = arg max
c∈C

p(x | c)p(c)

p(x)

ĉ = arg max
c∈C

p(x | c)p(c)

This tells us what is required for our model. For each class we need a class
prior probability p(c) and an estimate of the probability density of the point,
given that class. We can estimate the prior from the dataset (or use some other
knowledge about the class distribution) and we can build a MOG model for each
class to represent p(x | c).

Now that we have a way to build a classifier, we do of course still need a way
to find a set of models which fit the data well, models which represent each
p(x | c) accurately. This is discussed in section 4.2.3.

4.2.2 IFS classifier

The basic principle behind the IFS classifier is simple. We simply create a
Bayesian classifier, as we did in the previous section, and we use IFS density
models to approximate p(x | c). We have seen in section 3.5.1, how to calculate
this for a given IFS model. Instead of the recursive definition given there, we
will define the density as a single sum.

Let S = ⟨S1, . . . , Sk, ρ1, . . . , ρk⟩ be the model that we are trying to evaluate. Let
σ be a finite integer sequence ⟨σ1, . . . ,σr⟩ with σ ∈ (1,k). Let (1, k)r be the set
of all such sequences of length r.

Let Sσ be the composition of the transformations indicated by the sequence σ:

Sσ(x) = (Sσ1 ◦ . . . ◦ Sσr
)(x)

CHAPTER 4—CLASSIFICATION 51

(A) (B)

FIGURE 4.1: (a) A straightforward two-class IFS classifier evaluated to depth 6, each class (colored black and
white) is represented by a cantor set (green and blue on the right). The points colored red could not be classified
because the probability density was too low. (b) The more robust (and faster) IFS classifier with the same models.

and let ρσ be the weight associated with that transformation:

ρσ =
∏
σi∈σ

ρσi

Our IFS model, evaluated to depth r is now just the sum of kr initial probabil-
ity measures transformed by Sσ, each weighted by pσ. As before, our initial
probability measure is the standard Gaussian Nd(0, I). We will again restrict
the component transformations to affine transformations, so that the combined
transformations Sσ will also be affine transformations, and that each can be rep-
resented by a translation vector t, and a transformation matrix R: Sσ = ⟨Rσ, tσ⟩.

It can be shown that the affine transformation of the standard Gaussian by ⟨R, t⟩
is itself a Gaussian distribution N(t,RRT). Combining these elements, we can
express the probability density of a point x under our IFS measure S as

p(x | S) = lim
r→∞

∑
σ∈(1,k)r

ρσN(x|tσ,RσRσ
T)

Which, of course, we will approximate with a finite value for r (usually r = 5
will suffice).

There are two problems with this method which we need to address.

The first is shown in figure 4.1. Unlike the MOG model, IFS models usually
have a support that doesn’t cover the entire instance space. A MOG model will
assign each point a non-zero value. For most IFS models, almost all of the in-
stance space has probability density zero. Now, this technically only holds in
the limit, and for any finite approximation of an IFS model, using the standard
Gaussian as an initial image, all points will have a non-zero probability density.
However these probability densities very quickly become so small that in the
standard 64-bit floating point representation used in most computers, they are
indistinguishable from zero. This means that when we have, say, two IFS mea-
sures, each representing a posterior class probability, then points far removed
from either measure’s support will have probabilities so close to zero that they
are indistinguishable and the classifier can’t make a judgement.

The second problem is speed. For example, to evaluate the density of a single
point for a model with 3 components to depth 5, the method from chapter 3

CHAPTER 4—CLASSIFICATION 52

will need to evaluate N(x | µ,Σ) 243 times, and it will need to apply 364 trans-
formations to find the parameters of the Gaussians. In the course of learning,
we will need to evaluate the probability density of many points, so we need to
optimize this process as much as we can.

The first thing we will do to remedy these issues, is to limit the component
transformations to similitudes. As shown in section 3.3.2, this is often the best
choice. The fact that it uses fewer parameters than the other models means that
the ES algorithm is faster, finds good solutions quicker, and the uniform scaling
it offers will allow some important simplifications in determining probability
density.

We can express a similitude transformation as Si = ⟨t,A, s⟩, where t ∈ Rd is a
translation vector, A is a transformation matrix which only rotates and s ∈ R+

is a scaling parameter. The actual transformation can then be expressed as
Si(x) = Asx+ t.

The two important points about using similitudes as component transformations
are that, (1) a composition of two similitudes is a similitude itself, so that each
Sσ is a similitude and (2) for N(0, I) transformed by a similitude we have:

N(t, (As)(As)T) = N(t, (As)(sAT))

= N(t,AAT s2)

= N(t,AAT s2)

= N(t, Is2)

The last step follows from the fact that A is orthogonal.

We can now rewrite our classifier function for the IFS model with similitude
components:

ĉ = arg max
c∈C

p(x | c)p(c)

= arg max
c∈C

p(c)
∑

σ∈(1,k)r
N(x|tσ,RσRσ

T) ρσ

= arg max
c∈C

p(c)
∑

N(x|tσ, Isσ2) ρσ

We can write N(x|·) out in full, and simplify

N(x | µ,Σ) =
1

(2π)
d
2 det(Σ)

1
2

exp
[
−

1
2
(x− µ)Σ−1(x− µ)T

]

ĉ = arg max
c∈C

p(c)
∑ 1

(2π)
d
2 sσd

exp
[
−

1
2
d(x, tσ)2sσ

−2
]
ρσ

Where d(x,y) is the Euclidean distance between x and y (the square of which is
cheaper to compute than the distance itself). We can eliminate any scalars that
do not depend on the class:

ĉ = arg max
c∈C

p(c)
∑

sσ
−d exp

[
−

1
2sσ2d(x, tσ)2

]
ρσ

CHAPTER 4—CLASSIFICATION 53

This tells us that the only elements we need to evaluate p(x | c) are tσ, sσ and
ρσ for each σ ∈ (1,k)r. We have found that the most efficient way to construct
this classifier is to compute and cache these three values for each σ and evaluate
the above expression for each point encountered, using the cached values.

This expression goes to zero less quickly than the earlier version, but it does
not solve the problem of points outside the support of all IFS models. If we
encounter such a point (ie. we get p(c|x) = 0 for all c), we make the assumption
that for these points, the influence of the scaling factors sσ is negligible, and we
set them equal to a global constant s:

ĉ = arg max
c∈C

p(c)
∑

s−d exp
[
−

1
2s2d(x, tσ)2

]
ρσ

= arg max
c∈C

p(c)
∑

exp
[
−

1
2
d(x, tσ)2

]s−2

ρσ

For every σ, exp
[
− 1

2d(x, tσ)2
]s−2

ρσ is a monotone, nondecreasing function in
s, which means that the sum, and the sum weighted by s are monotone nonde-
creasing functions in s as well. As such the ordering does not depend on s, and
we can choose s to suit our needs. If we set s =

√
2, we get

ĉ = arg max
c∈C

p(c)
∑

exp
[
−

1
2
d(x, tσ)2

]
ρσ

This function can be used to evaluate points far away from any of the class
models.

4.2.3 Learning

One common way to learn a good Bayesian classifier from MOG models is to
partition the dataset by class, and learn a MOG model for each point set. These
MOG models can then be combined into a Bayesian classifier as described above.

For a dataset X with a set C of classes, we split the dataset X into |C| subsets
Xc, so that Xc contains all points that have class c: Xc = {xi | ci = c}. For
each of these, we train a MOG model (either using the methods described in
chapter 3 or some other method, like Expectation-Maximization). We use these
to estimate p(x | c) and we estimate p(c) as

p(c) =
|Xc|

|X|

This gives us a quick and straightforward way to build a classifier. Using the
algorithms from chapter 3 to train a model for each point set, we can replace
the MOG models with IFS models, and create an IFS classifier.

A second way to learn MOG and IFS classifier models is to express the whole
classifier as a vector of real values, and find a good model using evolution strate-
gies (described in chapter 3). Expressing the classifier as a vector is simple, we
already know how to express the MOG and IFS models as vectors, so all we

CHAPTER 4—CLASSIFICATION 54

need is |C| additional values for the class priors, which are encoded just like the
component priors of the individual models (ie. they are stored as real values of
any magnitude, and the absolute, normalized value is taken to build the model).

We need to change one more element of the learning algorithm to accommodate
our classifier models, the fitness function. When learning classifiers, we use
the symmetric error (the ratio of misclassified samples to the total number of
samples). Since the classifier is still relatively slow, we use a random subsample
of the dataset to evaluate a model’s fitness (and as before, we re-calculate the
fitness every generation).

In our experiments, we combine both these methods. The first method is used to
create a ‘seed’ model. We then learn the full classifier models based on these. In
the first generation of the final learning stage all models take their parameters
from the seed.

4.2.4 Results

We ran the experiments from the first section on the two classifiers described
above. We trained models for each class with 3 components, the seeds were
trained for 5000 generations, as were the classification models. We sampled
5000 points to determine the fitness of each model. We evaluated the IFS mod-
els to depth 5. The results are shown below.

× Newton Mandelbrot
× error MDL error MDL
MOG 0.219 0.601 0.009 0.464
IFS 0.161 0.663 0.0114 0.519

CHAPTER 4—CLASSIFICATION 55

MOG classifier

IFS classifier

size dim classes ifs mog ann knn c45
Iris 150 4 3 0.05 0.03 0.03 0.08 0.03
US Income Census 65534 8 2 0.05 0.06 0.05 0.06 0.05
Forest Cover 65536 10 7 0.22 0.24 0.16 0.11 0.09
Abalone 4177 8 3 0.43 0.44 0.47 0.49 0.49
Shuttle 58000 9 7 0.00 0.01 0.00 0.00 0.00

TABLE 4.1: The results (the ratio of misclassified instances in the test set) of classification on five natural datasets.
A randomly chosen section of 25% of the full dataset was withheld as a test set.

The IFS classifier does not seem to fulfill the promise of a model that can apply
large scale structure at ever smaller scales (or at least not the correct structure).

Natural datasets

Table ?? shows the performance of the IFS classifier against various others. Per-
formance is measured by the symmetric error (the simple ratio of misclassified
instances in the testset to the total size of the testset). We withheld 25% of the
total data as a test set. More accurate methods like cross-validation, or mea-
surements of the variance of the error, are currently not feasible for reasons of
performance. The datasets are described in appendix 2.

For the IFS and MOG models we trained models separately for each class (see
section 4.2.3) for 2000 generations, after which we trained the combined model
for a further 4000 generations. For the combined learning stage, we disabled
the ES option of rotation in the strategy parameters to improve performance.
Each IFS and MOG model (one per class) consisted of 3 components. agent
fitness was determined in both stages by a sample of 500 hundred points (using
the Hausdorff distance in the first stage, and the symmetric error in the second.
Similitude representation was used in all experiments.

Despite the fact that the IFS classifier does not live up to our expectations of a
fractal classifier, these results are encouraging. The performance shown in ?? is
clearly competitive, in some cases equal to, or better than other classifiers.

There are two caveats to that conclusion. First, The competing algorithms were
chosen without a great deal of care, and using more or less default parameters,
while the IFS classifiers has received a great deal more attention to fine tune
its parameters. Second, the performance of the IFS classifier is currently not
comparable to that of the other algorithms. The experiments in the three right-
most columns (those that do not rely on evolution strategies) took a little over
an hour to complete, whereas all experiments combined required around three
weeks to finish.

The performance problems are mostly due to the inefficient and indirect learn-
ing method of using an evolutionary algorithm. If a more direct method of
learning IFS models can be found, it should bring learning speed in line with
common algorithms.

CHAPTER 5 · RANDOM FRACTALS
The final chapter of this thesis discusses random fractals, the type of fractals that
we are most likely to find in ‘natural’ datasets. We discuss the problems that
these kinds of sets introduce to both classification and density estimation tasks.
We take a popular framework for describing random fractals—an extension of
the IFS concept—and construct a learning algorithm for it. A learning algorithm
that works not on single datasets, but on collections of datasets.

5.1 Fractal learning

Considering that we have learning tasks and datasets with fractal structure, as
shown in chapter 2, it may seem a simple conclusion that a fractal learning
model would be ideally suited for these tasks. But whether such models can
actually be useful depends heavily on context. As an example, consider the
task of learning the structure of a coastline. We wish to classify points within
in a rectangular coastal area as “sea” or “land”. We have our dataset of 2-
dimensional coordinates, each with an associated class. The decision boundary
of the perfect model would follow the coastline exactly. We will assume that
our coastline is quite rough, and has strong statistical self-similarity. Our usual
learners will, as we’ve seen, approximate the coastline as a smooth line. (Some,
like decision trees, will approximate the coastline quite well, but all will be
smooth at scales where the data stops providing information).

Our hypothetical fractal learner, however, would fit a line through the data and
apply the structure found at large scale at smaller scales as well. But a coastline
is only a statistical fractal. Unlike the perfectly self-similar fractals such as the
Koch curve and the Sierpinski triangle, its small scale structure does not follow
perfectly from its large scale structure. There is a random element which makes
the small scale structure impossible to predict perfectly. This poses a problem

(A) (B) (C)

FIGURE 5.1: Learning the structure of a coastline: (a) The dataset, (b) A smooth approximation using a neural
network (c) a fractal approximation using an IFS classifier.

CHAPTER 5—RANDOM FRACTALS 58

when interpreting the results. When a neural network draws a smooth line to
approximate the fractal coast we understand that it has ‘generalized away’ the
fractal structure. When a fractal learner presents its best fit, it has replaced the
fractal structure of the coastline with a fractal structure that resembles it. Both
learners are doing the same thing, finding the best fitting model, but since the
fractal learner’s result doesn’t look like generalization to us, we interpret the
results as a far more specific prediction.

We almost expect to be able to take the model as a map, and sail into all the little
fjords that the model tells us are there. A mistake we would never make with
the neural network’s unnaturally smooth coastline. How we should read the
fractal result is not as “there is a fjord here”, but as “this region has a fjord-like
structure which may look something like this”. Ideally, we would want a learner
to present not only a crisp fractal decision boundary, but also some indication of
uncertainty, telling us at what level the structure shown becomes a guess based
on assumptions of self-similarity.

The reason that we don’t have this problem with Euclidean learners is that as
we zoom into their decision boundary, it gets closer and closer to a straight line.
We can instantly equate smooth with a lack of knowledge and determine the
model’s uncertainty at a given level.

5.2 Information content

A concept that is central to the discussion of these and other problems, is the
information content of a fractal. There is a strong difference in what we can
ideally hope to learn about a natural fractal such as the distribution of ore in a
region, when compared to fractals generated by a purely deterministic process,
such as the Koch curve.

A concept that will aid our intuition is Kolmogorov complexity. Simply put, the
Kolmogorov complexity of an object (represented by a bit-string) is the length
of the shortest program that produces it on a given universal computer. 1 Since
it only takes a program of small finite size size to translate a program from one
universal computer to another, we speak about Kolmogorov complexity without
explicitly defining the actual universal computer used. We simply accept that
the value may differ by some small constant amount, depending on the choice
of universal computer. It should be noted that Kolmogorov complexity is a value
that cannot be computed (the statement “a has a Kolmogorov complexity of b”
is undecidable). We can, however, derive very close upper and lower bounds
for many situations. In this context we will not go into the technical details.

When we consider deterministic synthetic fractals like the Koch curve, the Sier-
pinski triangle, or even the Mandelbrot set, it’s plain to see that their Kol-
mogorov complexity is small. They can all be defined fully by a very small
computer program. We cannot say the same for fractals with a random ele-
ment. Some synthetic fractals are generated with a random element and almost
all natural fractals are driven by processes of such great complexity that they can

1A computer that can simulate any other computer correctly when provided with the right pro-
gram.

CHAPTER 5—RANDOM FRACTALS 59

be considered random for all intents and purposes. There is a caveat in both
cases. A particular computer-generated random walk (a synthetic random frac-
tal) will usually be generated using a pseudo-random number generator, giving
the resulting dataset a very short generating program (including the seed of the
random number generator). This means that the Kolmogorov complexity of a
computer generated random fractal is in the same order as that of deterministic
fractals. Similarly, it may be true that the interactions of the atoms in a cirrus
cloud follow purely deterministic rules and the whole cloud can theoretically
be described precisely by some relatively small starting state combined with a
perfect simulator. Both points are moot, of course, because we cannot induce
the seed of a proper random number generator from its output any more than
we can hope to perfectly measure the initial state of a particular cloud. For this
reason we will view the random element in the computer programs as truly ran-
dom in the sense of Kolmogorov complexity; ie. the random component cannot
be compressed by any significant amount.

The interesting point is that we can replace this random component by another
like it to create a fractal of the same type. For instance, in the case of our com-
puter generated random walk, we can replace the string of integers produced
by the random number generator with another string of random numbers (by
changing the seed) to produce another random walk. These are completely
different fractals, but they belong to the same family of fractals, defined by the
deterministic part of the generating algorithm. This deterministic program func-
tions as a kind of sufficient statistic. It represents everything we can reasonably
hope to learn about our fractal dataset.

An interesting example of a random fractal in this respect is the chaos game
method of generating the Sierpinski triangle. The generating algorithm has a
strong random component, and as the algorithm begins to produce points, the
dataset remains relatively uncompressable. However, in the limit the algorithm
generates a simple deterministic fractal with a very small Kolmogorov complex-
ity. In fact, if we use a discrete space of points (such as the floating point values
used in real-world computers) and we delete points that occur more than once
in the dataset, so that the limit set becomes finite, there will be a point during
the generation of the dataset where the most efficient way of describing the
dataset switches from a straightforward description of the generated points to
a description of the Sierpinski triangle and the set of points that haven’t been
generated yet.

The same can be said for a discrete random walk on the line or in the plane. We
know that in the limit, these processes fill their respective embedding spaces.
For the three-dimensional random walk, this doesn’t hold anymore. (Schroeder,
1996) In the limit the 3D random walk produces a different result for any ran-
dom string used to drive it. When we plot the Kolmogorov complexity of a
process generating the Sierpinski triangle as a function of time, we will see a
‘hump’ as the complexity increases and then returns to a small value. In the
case of a 3D random walk, the complexity only increases.

CHAPTER 5—RANDOM FRACTALS 60

5.3 Random iterated function systems

One way of dealing with the problems described above, is to learn a family
of fractals, rather than a single probability distribution or set. A framework
for defining random fractals in this way is described in (Hutchinson, 2000)
and related publications. As before, we describe the basic model and the main
result and refer the reader to the citations to find a more technical treatment
(including proofs).

5.3.1 RIFS sets

In the following it is helpful to define a random fractal not as a single set, but as
a probability distribution over compact Euclidean sets. By the same token, we
refer to a distribution over sets as a random set.

We define a random set E as a probability distribution over compact2 subsets of
Rd. Let E = ⟨E1, . . . ,Ek⟩ represent k independent draws from E.

Let Si again be a simple function from Rd to itself: Si : Rd → Rd. Let S be a
probability distribution over all k-tuples ⟨S1, . . . , Sk⟩ of functions Si : Rd → Rd.
Note that the Si are not drawn individually or independently (as the Ei); rather
the distribution is over complete k-tuples.

Consider now the set ⋃
i∈(1,k)

Si(Ei)

Because we’ve selected Ei and Si through a random process from given dis-
tributions S and E, this union represents another set drawn from a random
distribution. We will denote this distribution by

S(E)

It is of particular importance to note that when S(·) is constructed, we must
draw k independent sets from the argument to construct a new set analogous
to E.

S functions as a random scaling law on random sets. We say that a random set
K satisfies the scaling law S iff

K = S(K)

In other words, we have a probability distribution on compact sets K. If we
choose k compact sets according to this distribution and transform each by an
Si from a k-tuple chosen from S, then we get a new set S(K). If the probability
distribution over these resulting sets is equal to K, then we say that K satisfies
the random scaling law S.

The basic properties of deterministic IFS models hold for random IFS models as
well. There is a unique random set K that satisfies a given scaling law. 3

2Closed and bounded
3So long as every Si in any tuple resulting from S satisfies the open set condition.

CHAPTER 5—RANDOM FRACTALS 61

As with the deterministic IFS models, we can iterate the scaling transformation
to approximate K. As noted before, generating S(E) requires k independent
draws from E. This means that when we iterate S once, ie. we generate a
random draw from

S2(E) = S(S(E))

we must generate k independent draws from S(E) (and thus k2 independent
draws from E). As with the deterministic case it has been shown that

lim
m→∞ Sm(E) = K

for any distribution E over compact subsets of Rd.

5.3.2 RIFS measures

Let a random measure V be a probability distribution over the set of all com-
pactly supported 4 measures on Rd.

Since we will treat these measures as probability measures, things can get com-
plicated very quickly. To clarify, let P be a probability distribution over the set
of compactly supported probability measures on Rd. From P, we can choose
a single probability distribution p. From p we can then draw a set of random
points in Rd.

As noted in chapter 3, we can apply a transformation Si to a measure. Let
V1, · · · ,Vk be a set of measures drawn independently from V. Define S as
a probability distribution over 2k-tuples ⟨S1, · · · ,Sk, ρ1, · · · , ρk⟩, where Si are
functions as we have used them and ρi are positive real values that sum to one,
representing the probability of each Si. Let S = ⟨S1, · · · ,Sk, ρ1, · · · , ρk⟩ be one
such tuple drawn according to S.

Applying the scaling law to the randomly drawn measures as follows

k∑
i=1

ρiSi(Vi)

determines a new random measure

S(D)

The fundamental properties of iterated function systems have again been proved
for random measures. For a given random scaling law S, there is a single ran-
dom measure K which satisfies it. Repeated application of the scaling transfor-
mation to some initial random measure, will converge to K.

Section C.5 describes an algorithm for drawing a set of random points from a
random probability measure from a given S, which may help to elucidate the
concepts described here.

4That is, measures whose support is a compact set.

CHAPTER 5—RANDOM FRACTALS 62

The mean measure

Drawing a single random point from a single instance of a random measure
defines a probability distribution that is a weighted mixture of all the probabil-
ity distribution that the random IFS can generate. We will call this the mean
measure. To generate random points from the mean measure to depth r, we
can simply start with a point x0 chosen randomly from the initial distribution,
choose a random scaling operator S1 from the the RIFS (according the distri-
bution over scaling operators that defines the RIFS), choose from it a random
transformation S1

i . We can then define x1 = S1
i(x0) and repeat the process until

we get xr.

If we have a RIFS that only accords a discrete number of discrete scaling oper-
ators a non-zero probability, the mean instance is itself a discrete IFS. For each
scaling operator Sv = (Sv1 , . . . , Svk, ρv1 , . . . , ρvk), with probability p(v), the proba-
bility that transformation Svi is chosen in the generation of the mean instance is
ρvip(v).

This also tells us that we can generate points in the mean instance using the
chaos game method by repeatedly applying randomly chosen transformations.

5.3.3 Examples

Sierpinski triangles

At this point, it should be helpful to illustrate the concept of Random Iterated
Function Systems, and their expressive power with some examples.

We begin with a very simple example. For this example we use two deterministic
fractals, the first is the Sierpinski triangle pointing upwards, the second is the
same, but pointing down. The following images show the transformations that
make up the two deterministic IFS models. The image on the left shows the
initial distribution (shaped so that the transformations are easy to identify).

We define the random scaling law S as a choice between these two with equal
probability. The following images show points drawn from three instance of S.

CHAPTER 5—RANDOM FRACTALS 63

Koch curves

For this RIFS we use the Koch curve as a basis. As with the previous example, we
take the regular version, and an upside-down version, and define S as a choice
between the two with equal probability.

The following are three instances of this random fractal. here, we begin to see
how random iterated function systems can mimic natural, organic shapes.

An interesting observation can be made when we use a different, but equivalent
construction for the model’s components (note the rotations).

CHAPTER 5—RANDOM FRACTALS 64

Using two components instead of four, these constructions result in the Koch
curve as well. In regular IFS terms, they are equivalent to the 4-component
constructions shown above. However, when we use them to construct a random
fractal, the result is considerably different.

The difference becomes especially clear when we study the mean measures of
both models (the four component model is on the left).

Coast lines

The examples of the Koch curve shown above show a natural structure that is
reminiscent of coast lines. To pursue this notion further, we can change our
model from a distribution over a discrete set of IFS models to a continuous
distribution.

We define our distribution over IFS models as follows

• Choose two random points x ∼ N
[
(− 1

3 , 0),σ
]

and y ∼ N
[
(1

3 , 0),σ
]
.

• Define the line segments u as (−1, 0) to x, v as x to y and w as y to (1,σ).

• Define the line segment a as (−1, 0) to (1, 0)

• Find the transformations U, V and W consisting of rotation, scaling and
translation, so that U maps a to u and V maps a to v and W maps a to w.

CHAPTER 5—RANDOM FRACTALS 65

• let S =
〈
U,V,W, 1

3 , 1
3 , 1

3

〉
This procedure defines a probability distribution over 3-component IFS models,
and thus, a random iterated function system.

The following are three IFS models returned by this model for σ = 0.3.

Which leads to measures that form a continuous line (since every line segment
is always replaced by three segments which connect the previous corner points.
The following images are three instances:

Interestingly, when we increase σ the measure loses its line-like character. Fig-
ure ?? shows the progression as σ increases. The random number generator
used was reset to the same seed for each image generated, so that the instances
drawn are the same for each image, but with increasingly greater variance.

Random graphs

We can achieve a different class of images by subtly changing the method de-
scribed above.

• We choose a point x with x1 = 0.5, and x2 ∼ N(0,σ)

• We again define the line segments u as (−1, 0) to x and v x to (1,σ).

• As before, a is (−1, 0) to (1, 0)

• We now find the transformations, using only scaling, translation and shear-
ing so that U maps a to u and V maps a to v.

• Let S =
〈
U,V, 1

2 , 1
2

〉

CHAPTER 5—RANDOM FRACTALS 66

FIGURE 5.2: The same instance of the ‘coastline’ RIFS for increasing values of σ. The last image has σ = 0.9. The
other images are equally spaced between 0 and 0.9.

CHAPTER 5—RANDOM FRACTALS 67

This produces IFS components such as these (for σ = 0.6)

Which leads to the following RIFS instances

The are quite reminiscent of the persistent timeseries of chapter 2. The only
difference is that these are necessarily bridges, ie. their endpoints are fixed.

Gaussian models

In chapter 3, we used several representations of IFS models as vectors in a space
Rm for some m. We can define a Gaussian probability distribution Nm(µ, Iσ)
over this space to draw random discrete IFS models. This approach defines a
RIFS model for each value of σ.

This produces IFS components such as these (for σ = 0.45, with three discrete
IFS models, with three components per model, and using the similitude repre-
sentation)

Which leads to the following RIFS instances5

5These triplets do not represent a fair random choice. They were chosen as the three most
visually interesting from a fair set of 10 random instances.

CHAPTER 5—RANDOM FRACTALS 68

Figure ??, shows instances for increasing values of σ.

5.3.4 Learning RIFS measures

We want to be able to learn RIFS measures. We will be learning from a set Ψ of
sets Xi of points. The points in set Xi are assumed to be drawn independently
from a single instance of a RIFS measure (which we will attempt to approxi-
mate).

As in chapter 3, we require three elements to construct a learning method. A
representation for a hypothesis, a fitness function and a learning algorithm.
For our learning algorithm we will use evolution strategies again, exactly as
described in chapter 3.

To define a fitness function for these models, we use two particularly helpful
properties of the Hausdorff distance—our fitness function in the experiments
for learning regular IFS models. Firstly, that it is defined on point sets in metric
spaces, rather than just Euclidean spaces. Secondly, that it is itself a metric. This
means that the Hausdorff distance defines a metric space over sets of points. For
instance, in our earlier tests in chapter 3, it was used to define a metric space of
point sets in Rd.

Combining these two aspects we can use the Hausdorff distance on itself, that
is, define a distance between sets of point sets. Consider the task of finding a
random IFS that accurately models coastlines. We’ve seen that a random simple
IFS model can output things that look like coast lines, so the natural question
is, can we feed a learning algorithm a set of coastlines and find a random IFS
model that produces similar results. In this scenario, each set Xi ∈ Ψ is a set of
random points on a given coastline, with a different coastline for each Xi. We
will try to learn a RIFS S that fits Ψ well. To determine the fitness of a given S

we generate a set of sets Λ = Y1, . . . , Yw. We define the distance between two
instances as dH(Xi, Yi) and we will define the distance between the RIFS S and
the data Xi as dH(Ψ,Λ) with dH(Xi, Yi) as a metric.

Using this fitness function, the rest of the algorithm is relatively trivial. We
will focus on learning random IFS models that consist of a finite number of
t discrete IFS models, each with k transformations. The transformations can
be represented—using the TSR representation—in 2n + n2−n

2 real values. We
define a prior probability for each transformation, and for each discrete IFS, so
a random IFS model can be described in t(k(2n+ n2−n

2 + 1) + 1) real values.

With this description and the fitness function, we can use evolution strategies

CHAPTER 5—RANDOM FRACTALS 69

FIGURE 5.3: The same instance of the ‘Gaussian’ RIFS for increasing values of σ. The last image has σ = 1.5. The
other images are equally spaced between 0 and 1.5. Some of the examples for larger σ are empty, likely because
the transformations drawn were not, on average, contractive.

CHAPTER 5—RANDOM FRACTALS 70

to find a model that fits the dataset well.

5.3.5 Results

The main issue with this approach is its computational complexity. Calculating
the Hausdorff distance between point sets is already expensive and calculating
the Hausdorff distance between sets of point sets adds a a factor of q2 to that,
where q is the number of point sets in the dataset. Because of this constraint
we will limit ourselves to simple two dimensional datasets.

Since this is a new learning task, we cannot really compare the result numeri-
cally to any existing algorithm. We will simply limit ourselves to visual inspec-
tion of the resulting models to show that, in principle, the method works.

Cantor RIFS

The first RIFS model we attempt to reconstruct consists of two discrete IFS
models with equal probability. One cantor set arranged along the horizontal
axis and one along the vertical, both between −1 and 1.

The following images show the IFS models, the mean instance and three ran-
dom instances.

The datasets consisted of three hundred instances with 10000 point drawn from
each. The fitness of each agent was determined (once per generation) on a
random sample of 50 datasets and 50 points per dataset. After 400 generations,
the following model emerged.

The population size was 25, with 25 additional children generated each gener-
ation. Other parameters were chosen as in C.7.

CHAPTER 5—RANDOM FRACTALS 71

Koch RIFS

The learning task already increases in difficulty without increasing the dimen-
sionality, the number of models or the number of components per model. Train-
ing with the same parameters as the previous experiment, we attempt to learn
the model from section 5.3.3.

At generation 2000, we get the following results (from left to right, the mean
measure, the two component models and three random instances):

One method we can use to improve performance is to seed the model. We train
a regular discrete 4 component model on the mean measure, using the methods
from chapter 3. In our case we can generate the mean measure directly from
the model we are trying to learn. In the case of natural data—where would
would only have several point sets representing random instances—we would
take a sample of points from all datasets to approximate a sample from the
mean measure (remember, the mean measure dictates the probability of a point
averaged over all datasets). After training the seed for 2000 generations, we
found the following model (the target mean model is shown on the right):

We now create the initial population for our RIFS learning experiment from this
final model. Each agent in the initial population requires 4 four components

CHAPTER 5—RANDOM FRACTALS 72

(two models, two components per model), which are chosen at random with
replacement from the four components of the final model. Using the same
parameters as in the previous experiment, we achieve the following result after
2000 generations.

Discussion

We have achieved a measure of success in learning very simple examples of
random fractals. Clearly, the method is not ready to tackle natural datasets
yet, but these results show, that the basic principles work. In particular, the
notion of applying the Hausdorff distance twice, is in principle successful as a
fitness function. The major drawbacks of the method are the complexity of the
fitness function: O(q2r2), where q is the number of point sets tested and r is
the number of points per set. Our experiments suggest varying q and r does
not change the performance very much, if the value q2r2 is kept fixed (in other
words we can’t use clever choices for q and r to improve performance).

As with the previous two chapter, hope for improvement lies in three elements.
Optimization should be able to improve the range of this method very quickly.
While the core methods were implemented as efficiently as possible, our im-
plementation as a whole lacked any sort of parallelization. The calculation of
Hausdorff distance should be very simple to parallelize and there are many al-
gorithms available to parallelize Evolution strategies. Furthermore, the version
of ES used in our implementation is somewhat dated, and later versions are
likely to improve performance and reduce the number of parameters. Finally
there is always the hope that future hardware improvements will bring a greater
number of learning tasks within the range of this method.

Another option is to reduce the complexity of the models. Instead of searching
the space of all models consisting of all possible affine transformations, we can
make the simplifying assumption that our data fits the type of model described
in section 5.3.3. Under this assumption we would only need to fin the parameter

CHAPTER 5—RANDOM FRACTALS 73

σ that optimizes the fitness function.

Another way of improving the method would be to restrict the data to two
dimensional images and define the distance between two point sets as the mean
squared error (or something similar), while maintaining the use of Hausdorff
dimension for the distance between sets of sets. This approach may lead to a
more accurate (and possibly faster) fitness function. The downside is that it
doesn’t scale well to higher dimensions.

If these improvements do indeed increase the range of this method, datasets
like the following might be analyzed using RIFS models

§ Financial timeseries may be an early contender. Their low dimensionality
make the complexity of the task a likely contender to work without a great
deal of improvement to our method. The only drawback is that we need
to allow shearing in our family of transformations, which only allows the
simple representation (see section 3.2.2).

§ In a similar vein, we might attempt to analyze EEG recordings and other
timeseries data (see also the references at the end of section 2.2).

§ Snowflakes. The crystallizing process behind snowflakes generates a struc-
ture that is not perfectly fractal, but can likely be decribed well by a frac-
tal model. We only require two dimensions, but the the sixfold symmetry
present in almost all snowflakes suggest a requirement of at least 6 com-
ponents. Our initial tests to performs this task yielded no usable results.

§ Bacterial colonies. Bacteria are often analyzed by taking swabs of some
object and cultivating the swab in a petri dish. When bacteria are present
in the original swab, they will grow out into a colony. The size of the
colony indicates the number of bacteria on the original swab, but the
structure of the colony can be an indicator of the type of bacteria present.
RIFS models may be a helpful way to analyze images of bacterial colonies
automatically.

§ Clouds are a typical example of fractals. Using satellite data it’s possible
to construct 3d images of clouds.(Wittenbrink et al., 1996) If these meth-
ods can be transformed to generate point sets, the resultant data can be
modeled as random fractals.

§ Elevation data and fracture surfaces. Modern technology can give us ele-
vation data from scales as large as mountain ranges to micrometer-scale
images of fracture surfaces. While these are not point sets as we have
used, they can be seen as an elevation function, and thus as a measure,
which means they can be modeled as random fractals.

So far we have only attempted to learn simple RIFS models of synthetic datasets
and inspected the results visually. This suggests that a model trained on a
dataset of, for instance, snowflakes, can give us a fractal based simulation of
snowflakes generation that may lead to new insight in the original data. while
interesting, this has limited applicability (snowflake formation, for instance,

is already very well understood). However, once we have found that we can
successfully model our phenomenon with random fractals, many new options
become available.

As an example, we might build a classifier by training one RIFS model on cu-
mulus clouds and another RIFS model on cirrus clouds. Using the Hausdorff
distance, we can then classify unseen clouds based on the distance to data gen-
erated by these models.

Even when the data cannot be successfully modeled by a random fractal model,
we can generalize our assumption to say that we assume the data to be gener-
ated by some random measure. Say for instance that we have a large collection
of EEG measurements. Without training a random fractal model, we can still
apply the Hausdorff distance, and use a host of clustering algorithms on the
resulting distance matrix.

In short, the combined notions of random measures and Hausdorff distance
suggests a new area of learning tasks, where RIFS models are a natural method
of modeling.

CONCLUSIONS

The primary goal of this thesis was to show that fractal geometry could play an important
part in the field of machine learning.

First, we investigated the fractal structure already present in naturally occurring datasets.
Chapter 2 shows, first and foremost, that there are many well-established methods to
measure fractal dimension—the most important qualifier of fractal structure. Our results
show that few datasets have an intrinsic dimension that is close to their embedding
dimension. Furthermore, in the limited sample of datasets that we tested, there did
not seem to be any bias for data with an integer-valued dimension, suggesting that
fractal data may be the rule rather than the exception. Current methods of measuring
dimension do not have sufficient accuracy to test these suggestions more rigorously. A
short description of relevant research in time-series analysis shows that the idea of self
similarity in natural data is by no means novel or controversial.

Our second claim was that modern learning algorithms were Euclidean in nature, and
could therefore not adequately deal with fractal data. The first half of chapter 4 provides
visual evidence to this effect. An important point to remember when analyzing these
results is that this behavior is often more of a blessing than a curse. In many situations,
we expect the concept under study to be a Euclidean one, complicated with fractal noise.
In these situations, the Euclidean learners help us to generalize the noise away. The
problem is that this assumption has so far been implicit. By making it explicit, we can
begin to investigate exactly when it is appropriate to see fractal structure as noise and
Euclidean structure as meaningful, and when these assumptions break down.

Most of our efforts were devoted to investigating possibilities for fractal modeling. Our
attempts in chapter 3 show that there are fundamental problems when using IFS mod-
els (and likely all families of fractals) as probability models. These problems can be
overcome by slightly augmenting the approach, specifically by using a different fitness
function. Under this fitness function, IFS models perform well compared to mixture of
Gaussian models. When we use these modified probability models to construct a classi-
fier (chapter 4), they clearly show competitive behavior when compared with common
machine learning methods, at the price of a far greater learning time. Since this is a
very new method with only a basic implementation, there is every possibility that new
insights, optimization and hardware improvements can make the method a viable option
for approaching certain real-world problems.

Our final chapter discusses the random nature of natural fractals. This poses new prob-
lems not adequately addressed by the deterministic fractal models. Using the random
iterated function system model, this leads naturally to a new class of learning tasks,
involving distributions over multiple probability measures. We provide a few modest
results in conquering such learning tasks, with the hope that these can be expanded to
make the method viable for real-world learning tasks.

ACKNOWLEDGEMENTS

I would like to thank my supervisor Pieter Adriaans for the many interesting
discussions and insightful advice, without which this thesis wouldn’t be half as
interesting. My thanks also go out to the members of the defense committee,
specifically Maarten van Someren for his efforts in guiding this thesis to com-
pletion.

APPENDIX A · COMMON SYMBOLS
[· · ·] : When the argument is a logical expression, these are Iverson brackets,

representing 1 if the argument is true, and 0 otherwise. If the argument is
numeric, square brackets are simply synonymous with parentheses: (· · ·).

λ(·) : The Lebesgue measure. Generalization of length, surface, volume, etc.

d(a,b) : The distance between points a and b.

Bϵ(x) : A ball of radius ϵ centered on point x: Bϵ(x) = {y : distance(x,y) ⩽ ϵ}.

Bϵ : Shorthand for Bϵ(0), a ball of radius ϵ centered on the origin.

∼ : Used to denote that a random variable has a particular distribution, eg.
X ∼ U(0, 1) means that X is uniformly distributed between 0 and 1. In the
context of pseudocode, it can also mean that a variable’s value is drawn
from a particular distribution.

U(a,b), U(x|a,b) : A uniform distribution over the interval [a,b].

N(µ,σ), N(x|µ,σ) : The normal distribution with mean µ and standard devia-
tion σ.

Nd(µ,Σ), Nd(x|µ,Σ) : A d-dimensional normal distribution with mean µ and
covariance matrix Σ. The subscript may be dropped when the dimension-
ality is apparent form the context.

Id : The d by d identity matrix. The subscript may be dropped when the di-
mensionality is apparent form the context.

|x| : The length (norm) of vector x. If the argument is a set, this represents its
cardinality.

diam(A) ; the diameter of a set A. The maximum distance between any two
points in A: max{d(a,b) | a,b ∈ A}

diag(M) : A vector representing the diagonal entries of the (square) matrix M:
vi = Mii.

diag(v) : A matrix M, whose diagonal entries have are taken from vector v

(Mii = vi) with all other entries 0.

minA, maxA : Respectively the smallest and largest elements in the set A (as-
suming that all elements in A are comparable by some natural ordering).

min(x1, x2, · · · , xn), max(x1, x2, · · · , xn) : Respectively the smallest and largest
values of the input arguments: min{x1, x2, · · · , xn}.

min
x∈X

f(x) : The smallest of all the values obtained by applying the elements of X

to the function f(·): min {f(x) | x ∈ X}.

max
x∈X

f(x) : Analogous to min
x∈X

f(x)

Dq The dimension of a probability distribution, where q is a weighting param-
eter.

D0, DB The box counting dimension.

D1, DI The information dimension.

D2, DC The correlation dimension.

p(A) The probability of a set A ⊂ Rd.

p(x) The probability density of a point x ∈ Rd

S,Si, ρi The elements that describe a scaling law. A scaling law for for sets is a
k-tuple S = ⟨S1, . . . , Sk⟩ of maps Si : Rd → Rd. A scaling law for sets is a
2k-tuple S = ⟨S1, . . . , Sk, ρ1, . . . , ρk⟩ with Si as before, and ρi ∈ (0, 1),R,
with

∑
ρi = 1.

iid Independent identically distributed

iff If and only if

APPENDIX B · DATASETS

B.1 Point sets

B.1.1 Synthetic datasets

FIGURE B.1: The dataset ‘three’; a simple
mixture of Gaussians distribution.

The following are datasets generated from sim-
ple algorithms. The advantage of these datasets
is that they are free of noise, and many proper-
ties, such as fractal dimension, have been ana-
lytically established. We will mainly use these to
determine the behavior of many learning algo-
rithms before moving on to real-world learning
tasks.

In some of the images in this chapter, the levels
have been manipulated to bring out the detail.

Three

A very simple, specifically non-fractal dataset.
It contains random points, generated from a 2D

Gaussian mixture model, with three components, each symmetric with equal
variance, and arranged in a triangle.

IFS sets

Simple IFS fractals. Specifically, the Sierpinski triangle, the Koch curve and the
Cantor set.

B.1.2 Natural datasets

Population density

FIGURE B.2: The population density of
China.

The distribution of people across a stretch of
land follows a kind of fractal generating pro-
cess, whereby people are both attracted to and
repelled by centers of population.

The dataset used is the Gridded Population of
the World, version three available from http:

//sedac.ciesin.columbia.edu/gpw. This
dataset was produced by the Center for In-
ternational Earth Science Information Network
(CIESIN) and the Centro Internacional de Agri-
cultura Tropical (CIAT). It is a histogram of the
population of China. It provides population
density data at a resolution of 2.5 arcminutes.

http://sedac.ciesin.columbia.edu/gpw
http://sedac.ciesin.columbia.edu/gpw

APPENDIX B—DATASETS 82

We transform this into a point set by drawing random points from the histogram.

Originator Center for International Earth Science
Information Network (CIESIN), Centro
Internacional de Agricultura Tropical
(CIAT).

Publication Date 2005
Title Gridded Population of the World, Ver-

sion 3 (GPWv3) Data Collection
Geospatial Data
Presentation Form

raster digital data, map

Publication Place Palisades, NY
Publisher CIESIN, Columbia University
Online Linkage http://sedac.ciesin.columbia.

edu/gpw/index.jsp

Road intersections

FIGURE B.3: Road intersections in Mont-
gomery County.

A pointset used in (Wong et al., 2005; Ku-
maraswamy, 2003) and many other papers re-
garding the fractal dimension of finite data.
This dataset records as two dimensional points
the road intersections in Montgomery County in
Maryland, with 9552 points.

The dataset was generated from the US cen-
sus’ TIGER database. The processed version
was downloaded from Leejay Wu’s site at http:
//www.cs.cmu.edu/~lw2j/.

Basketball

18 numeric attributes such as points scored and
penalty minutes for around 19000 instances.
Each instance represents a year that a player
played for a given team. The years used are
1946-2004. The data was downloaded from
databasebasketball.com (formerly basketballreference.com).

Galaxy cluster distribution

The large scale structure of the universe, seen at the scale of superclusters of
galaxies exhibits a fractal structure, where galaxies are gravitationally bound
in filaments, the largest known structures in the universe. The dataset is a
numeric point set, containing redshift data, and position in the sky for around
18000 galaxies. These coordinates are converted to cartesian coordinates and
scaled so that the full set fits into the bi-unit cube.

The dataset containing cartesian data was downloaded from the website of John
Huchra at http://www.cfa.harvard.edu/~huchra/seminar/lsc/. It was gen-
erated from the 2 Micron All-Sky Survey Redshift Survey.

http://sedac.ciesin.columbia.edu/gpw/index.jsp
http://sedac.ciesin.columbia.edu/gpw/index.jsp
http://www.cs.cmu.edu/~lw2j/
http://www.cs.cmu.edu/~lw2j/
databasebasketball.com
basketballreference.com
http://www.cfa.harvard.edu/~huchra/seminar/lsc/

APPENDIX B—DATASETS 83

bt

FIGURE B.4: The large scale structure of the universe.

This publication makes use of data products from the Two Micron All Sky Sur-
vey, which is a joint project of the University of Massachusetts and the Infrared
Processing and Analysis Center/California Institute of Technology, funded by
the National Aeronautics and Space Administration and the National Science
Foundation.(Skrutskie et al., 2006)

Sunspots

A one-dimensional time series of the number of sunspots per month from 1749-
1983. Downloaded from http://robjhyndman.com/TSDL/ (Hyndman, 2009),
originally from (Hipel & McLeod, 1994).

FIGURE B.5: A monthly count of the number of sunspots.

Currency

The global economy is notorious for producing a variety of chaotic processes
and fractal structures.

This dataset records exchange rates for the Australian dollar, British pound,
Canadian dollar, German DeutschMark, Dutch guilder, French franc, Japanese
yen and the Swiss franc.

The data was downloaded from the time series library at http://robjhyndman.
com/TSDL/ (Hyndman, 2009), originally from (Franses & Van Dijk, 2000).

http://robjhyndman.com/TSDL/
http://robjhyndman.com/TSDL/
http://robjhyndman.com/TSDL/

APPENDIX B—DATASETS 84

FIGURE B.6: The exchange rates of the Australian dollar, the British pound and the Canadian dollar, from 1979 to
1998.

B.2 Classification datasets

These datasets were used for classification tasks. Each contained points with a
number of numerical features, and a single nominal feature, to be predicted.

B.2.1 Synthetic datasets

The Mandelbrot set

FIGURE B.7: The Mandelbrot set

Arguably the most famous fractal of all. Us-
ing the points c and z in the complex plane,
and starting with z = 0, we iterate the func-
tion f(z) = z2 + c. If the point remains within
some fixed radius, c is in the Mandelbrot set.
Practically, we iterate for at least 50 steps and
see whether the point has traveled outside the
circle with radius 10. (For the familiar fractal
zoom, much larger values are required, but for
our purposes, these numbers suffice.

Newton fractal

Newton’s method is a way of finding numerical approximations of optimization
problems, in the context of the Newton fractal, it usually refers to the problem
of finding the roots of a complex polynomial. Using, for instance the polyno-
mial f(z) = z3 − 1, there are three possible solutions. Which solution Newton’s
method converges to, depends on the chosen starting point. If we color each

APPENDIX B—DATASETS 85

starting point according to the solution it converges to (assigning each an arbi-
trary color), we get the fractal of figure B.8.

FIGURE B.8: A Newton fractal. Basins of
attraction of the Newton method, applied
to finding the complex roots of f(z) =
z3 − 1.

If we treat this as a learning task, we get a set
of points with two numerical attributes (defin-
ing a point in the plane) and one of three
classes, determining the solution to which New-
ton’s method converges.

The magnetic pendulum

The fractal that was discussed in section 1.0.1

B.2.2 Natural datasets

These were all downloaded from the UCI Ma-
chine Learning repository (Asuncion & New-
man, 2007).

Iris

The classic dataset introduced by Fisher in 1936 (Psychol et al., 1936). It records
four features of three species of iris, for 50 specimens per species.

US income census

This dataset contains census data for American households. The target class
is whether the annual income is above or below 50000 dollars. Non-numeric
features were removed.

Downloaded from http://archive.ics.uci.edu/ml/datasets/Census-Income+

(KDD).

The dataset was clipped at about 65 thousand instances for the experiments in
this thesis.

Forest cover

Contains 581012 instances each representing a 30×30 meter patch of ground in
a US forest, described by 54 numeric attributes. One of seven classes describes
the predominant type of forest cover (for instance: ponderosa pine, douglas fir
or cottonwood/willow).

Downloaded from http://archive.ics.uci.edu/ml/datasets/Covertype, cour-
tesy of Jock A. Blackard and Colorado State University.

The dataset was clipped at about 65 thousand instances for the experiments in
this thesis.

Abalone

Contains 4177 instances, each representing a single specimen of abalone, with
8 numeric features per specimen. The classes are male, female and infant.

http://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD)
http://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD)
http://archive.ics.uci.edu/ml/datasets/Covertype

Downloaded from http://archive.ics.uci.edu/ml/datasets/Abalone.

Shuttle

A NASA dataset of measurements on the shuttle. Contains 58000 instances, 9
numeric features and 7 classes.

Downloaded from http://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle).

http://archive.ics.uci.edu/ml/datasets/Abalone
http://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)

APPENDIX C · ALGORITHMS AND

PARAMETERS
This chapter provides technical descriptions of algorithms that are useful in con-
ducting the experiments described in the main text. Some are not part of the
final algorithms described, but were used in earlier versions or side experiments.
They are described because they may be of use to anyone conducting similar
research.

APPENDIX C—ALGORITHMS AND PARAMETERS 88

C.1 Volume of intersecting ellipsoids

Given two ellipsoids P and Q, both of dimension m, we wish to estimate the
value

λ(P ∩Q)

λP

In order to accomplish this we draw N random points uniformly from P, and
count the number N ′ that fall inside Q, so that for large N, N ′/N approximates
the required value.

Each ellipse is represented by a rotation matrix R and a translation t vector so
that R · B1 + t is the ellipsoid, in other words the ellipsoids are defined as a
transformation of the unit ball.

Algorithm 1 Estimating the intersection ratio for two ellipsoids.
N ′ ← 0
repeat N times

random uniform draw from the unit ball 1

x = {x1, . . . , xm}, with xi ∼ N(0, 1)
u ∼ U(0, 1)

r← u
1
m

x

∥x∥

turn it into a random point in P

p← RP · r+ tP
Coordinates relative to Q’s center
p← p− tQ
Transform coordinates so that Q is a ball
p← inv(Q) · p

if ∥p∥ ⩽ 1 then N ′ = N ′ + 1

return
N ′

N

1The algorithm to generate this was taken from (Rubinstein & Kroese, 2007). Note that rejection
sampling from a uniform distribution over (−1, 1)m—rejecting those points with distance to the
origin greater than one—will also generate a uniform distribution over the unit ball, but as the
size of the rejection region grows exponentially with the dimension, this isn’t a viable algorithm for
dimensions greater than 5.

APPENDIX C—ALGORITHMS AND PARAMETERS 89

C.2 Probability of an ellipsoid under a multivariate Gaussian

Given an ellipsoid E of dimension d, we wish to estimate the probability of E
under the distribution Nd(0, Id). In other words, what is the probability that a
random point chosen from Nd(0, Id) falls in E?

This method is adapted from the more general algorithms described in (Somerville,
1998). We can describe any epsilon E as an affine transformation E = ⟨R, t⟩ of
the unit ball:

E(B1) = RB1 + t

The inverse of this operation is E−1 = ⟨R−1,−R−1t⟩.

The basic idea of this algorithm is to choose random directions, or lines through
the origin, and to get an estimate of E’s probability from the section of this
line that intersects E and the probability of this section given the distribution
N(0, I). We average these estimates over many random directions to get a good
approximation.

We choose a random direction r (a unit vector, see C.1) and we define the
random variable R as a point from Nd(0, Id) which lies on the line r. It can be
shown that R ∼ χ2(d), ie. R is distributed according to a chi-squared distribution
with d degrees of freedom. We know that r must intersect the boundary of E in
zero, one or two points.

Once we have the intersection points (the method for finding these is explained
below) we can use the following properties.

If the origin is inside E (ie. if ∥E−1(x)∥ ⩽ 1) we have one intersection point rα,
where α is the distance to the boundary of E and we have p(R ⩽ α) = Fχ2(α,d),
where Fχ2 is the cumulative distribution function of the chi-squared distribution.
In this case, we have

N(E|0, I) = lim
n→∞

∑
i∈(1,n)

p(R(ri) ⩽ riα) + p(R(−ri) ⩽ −riα)

n

Where R(·) and α(·) represent the random variables and distances to the bound-
ary of E for a given direction. ri represent independently drawn random direc-
tions, and we sum the probability for r and −r because we want to use a full
line per sample, and not just the half-line from the origin.

If the origin is outside E, our direction can intersect the boundary at zero, one
or two distances. In the first two cases, we count the probability for this line as
zero. If there are two intersection points, α1 < α2 we use

p(α1 < R ⩽ α2) = Fχ2(α2,d) − Fχ2(α1,d)

As before, we average over this value for n random directions.

We will now explain how to find the intersections between r and the boundary
of E, bd(E). We know that bd(B1) = {x | d(0, 1)} so that

bd(E) =
{
x | d(0,E−1(x)) = 1

}
=

{
x | ∥R−1x+ R−1t∥ = 1

}

APPENDIX C—ALGORITHMS AND PARAMETERS 90

since the points are on r, we also know that x = rα where α is a scalar. This
gives us the following equation to solve:

∥R−1rα+ R−1t∥ = 1

We square both sides, giving us the inner product on the left:

[
R−1rα+ R−1t

]T [
R−1rα+ R−1t

]
= 1

α2⟨R−1r⟩− α
(
⟨R−1r,R−1t⟩+ ⟨R−1r,R−1t⟩

)
− ⟨R−1t⟩− 1 = 0

Where ⟨x,y⟩ is the inner product and ⟨x⟩ = ⟨x, x⟩. We can solve for α using the
quadratic formula, using the discriminant to determine the number of intersec-
tion points.

Finally, we can adapt this method for arbitrary Gaussian distributions by defin-
ing the required MVN as as an affine transformation of the standard distribution:
G(x) = Sx + u, which makes the resulting distribution N(u,SST).We can then
say that N(E | u,SST) = N(G−1(E) | 0, I).

Algorithm 2 Estimating the probability of an ellipsoid under N(0, I).
N: Number of samples
E = ⟨R, t⟩: An ellipsoid with dimension d.

s = 0
repeat N times

r← A random unit vector

The parameters for the quadratic formula
a← ⟨R−1r⟩
b← ⟨R−1r,R−1t⟩+ ⟨R−1r,R−1t⟩
c← ⟨R−1t⟩− 1

The discriminant
d← b2 − 4ac
if d ⩾ 0

α1,α2 → −(b±
√
d)/2a

if ∥R−1x− R−1t∥ ⩽ 1 # if x is in E

s← s+ Fχ2(|α2|,d) + Fχ2(|α1|,d)
else

s← s+ Fχ2(α2,d) − Fχ2(α1,d)

return
s

N

APPENDIX C—ALGORITHMS AND PARAMETERS 91

C.3 Optimal similarity transformation between point sets

Given two point sets X = ⟨x1, x2, . . . , xn⟩ and Y = ⟨y1,y2, . . . ,yn⟩ with xi,yi ∈
Rd we can calculate directly an affine transformation (consisting of a rotation
matrix R, a translation vector t and a single scaling parameter c) which mini-
mizes the mean squared error:

E(R, t, c) =
1
n

∑
i∈(1,k)

∥yi − (cRxi + t)∥2

We only detail the method itself here. A proof is given in the original paper
describing the method. (Umeyama, 1991)

This algorithm isn’t used in the final text of this thesis, but it is a particularly
relevant tool for the task of finding IFS models. If we have some indication of
which points in a dataset are likely to map to one another under one of the IFS
models transformations, we can use this algorithm to find that transformation.

Algorithm 3 Finding the optimal similarity transformation between two point
sets
X: A matrix X = ⟨x1, x2 . . . , xn⟩ with xi ∈ Rd

Y: A matrix Y = ⟨y1,y2, . . . ,yn⟩ with yi ∈ Rd

The means
x̄ = 1

n

∑
x∈X x

ȳ = 1
n

∑
y∈Y y

Standard deviations
σx

2 = 1
n

∑
x∈X ∥x− x̄∥2

σy
2 = 1

n

∑
y∈Y ∥y− ȳ∥2

Covariance matrix
Σ = 1

n

∑
i∈(1,n)[xi − x̄][yi − ȳ]T

Singular value decomposition
⟨U,D,VT ⟩ = svd(Σ)

S← Id # the identity matrix
if det(Σ) < 0

Sdd ← −1

The optimal parameters
R = USVT

t = ȳ− cRx̄

c = 1
σx

2 trace(DS)

APPENDIX C—ALGORITHMS AND PARAMETERS 92

C.4 A rotation matrix from a set of angles

A vector of (d2 + d)/2 angles is sufficient to describe any rotation in a d dimen-
sional Euclidean space. The following algorithm describes how to transform
such a vector into a rotation matrix R. This method is taken from (Rudolph,
1992) and (Schwefel & Rudolph, 1995). It is required to use the TSR and Simil-
itude parameter representations and in the ES algorithm, to generate random
normal mutations based on the strategy parameters of the agent.

Algorithm 4 Constructing a d-dimensional rotation matrix from a set of angles.

a: A vector of size (d2 + d)/2 with ai ∈ Rd

R← Id # The identity matrix
for i ∈ (1,d− 1)

for j ∈ (i+ 1,d)
Construct an elementary rotation matrix E

k← (2d− i)(i+ 1)/2
E← Id
Eii,Ejj ← cos(ak)
Eij,Eji ← − sin(ak)
R← R · E

return R

APPENDIX C—ALGORITHMS AND PARAMETERS 93

C.5 Drawing a point set from an instance of a random measure

Section 5.3.2 describes the concept of random measures, specifically random
probability distributions. As explained in that section every probability distri-
bution over 2k-tuples (such that one instance contains k maps and k priors)
determines a unique random fractal (where a random fractal is a probability
distribution over Euclidean sets with statistical self-similarity).

S can be described in many ways, We can select a finite number of discrete IFS
model, and simply choose from them at random, we can describe the 2k-tuple
as a vector in a very large parameter space (as described in chapter 3) and
choose a random parameter according to some simple distribution. There are
many possibilities. For this algorithm all that is required is that we can generate
a random instance according to S.

Since we are approximating the process

lim
m→∞ Sm(E)

we will use a recursive function, that ends at a given depth with a random draw
from E. Since the influence of E diminishes as m grows, we will take E to be
the distribution over measures which always returns the standard multivariate
normal distribution N(0, I).

Algorithm 5 Drawing a set of iid points, distributed according to a single in-
stance of some S

S: A probability distribution over k tuples as described above
n: The number of points to return.
s: A seed for a random number generator r(s) as described above
d: The depth to which to evaluate.

function instance(S,n, s,d)
return instanceInner(S,n, r(s),d)

function instanceInner(S,n, r,d)
if d = 0

return [probRound(n) points drawn from N(0, I]

Draw a random discrete scaling law
S ∼ S

for i ∈ (1,k)
Draw a random instance at a lower recursion depth
Ii ← instanceInner(S,n · ρi, r,d− 1)

return
∑

i∈(1,k) Si(Ii)

APPENDIX C—ALGORITHMS AND PARAMETERS 94

We include a parameter s in the function to represent a seed to a standard
random number generator. We use this random number generator when gen-
erating the draws from S, but not when drawing points from N(0, I) at the end
of the recursion, so that when the function is called twice with the same seed,
it returns two different point sets drawn from the same instance of the random
fractal defined by S

In most situations, n will not be an integer at the end of recursion, and in
many scenario’s it will always be below 0.5. Because of this, it is useful to use
probabilistic rounding. A probabilistic round rounds a given real valued number
r at random, in such a way that the expectation of such a rounding operation
equals r. Since the line where n is rounded is called many times, the functions
returns on average, about the right number of points.

The following algorithm describes how to implement probabilistic rounding.

Algorithm 6 Probabilistic rounding
r: A real valued number.

function probRound(r)
u ∼ U(0, 1)
if u < r− floor(r)

return ceil(r)

return floor(r)

APPENDIX C—ALGORITHMS AND PARAMETERS 95

C.6 Box counting dimension

Estimating I0(ϵ) for the range ϵ ∈ {1, 1
2 , · · · , 1

2n }.

Algorithm 7 Building a tree to estimate the box counting dimension
n: Maximum depth
X: A dataset of points in Rd scaled to fit (0, 1)d

global ϵ← 0n # A vector of n elements that will hold the box counts

r← new node # Root node
for x ∈ X

0d and 1d are vectors of length d filled with values 0 and 1 respectively
σ = code(x, 0d, 1d, ⟨⟩,n)
r.add(σ, 1)

return ϵ

function code(x, m−, m+,σ,k)
if d = 0 return σ

p = (m− + m+)/2 # Calculate center of parent box
c← 0
n− ← 0d, n+ ← 1d

for i in [0,d)
if xi > mm

i

c← c+ 2i

n−
i ← pi, n+

i ← m+
i

else
n−
i ← m−

i , n+
i ← pi

σ.add(c) # add the new codon to the sequence
return code(x, n−, n+,σ,k− 1)

class node
field c← new map # Children: a map from codons (integers) to nodes
field k← 0 # The depth of this node in the tree
function add (σ, i)

if ¬c.contains(σi)
n← new node
n.k← k+ 1
ϵk+1 ← ϵk+1 + 1 # Increment the box count
c.add(σi,n)

c.get(σi).add(σ, i+ 1)

APPENDIX C—ALGORITHMS AND PARAMETERS 96

C.7 Common parameters for evolution strategies

Unless noted otherwise, these parameters were used for evolution strategies.

τ 0.8 The mutation of the angles section of the strat-
egy parameters are mutated by N(0, τ).

υ 0.001 The mutation of the scaling section of the strat-
egy parameters are mutated by N(0,υ).

u 50 The population size after the bottom agents are
removed.

v 100 The population size after the children have been
created.

g 4000 Training is stopped after g generations, and the
top model of the last population is selected.

s 250 The sample size. Calculating the Hausdorff dis-
tance is far to expensive an operation to per-
form on the whole dataset, every model, ev-
ery generation. We sample s points from the
dataset with replacement, and s points from the
model, and calculate the Hausdorff distance for
between these as the model’s fitness. The value
is stored for a single generation and recalcu-
lated on fresh samples the next.

o 2 The number of parents for each child. These
are chosen at random from the population, with
replacement.

Crossover uniform All parameters are mutated by uniform
crossover. For each parameter pi in the child, a
random parent is chosen, and its pi is copied.

σo,σs,σa 0.01, 0, 0 When generating the first population, we
choose the parameters from a normal distribu-
tion. The model parameters are chosen from
N(0,σo), the scaling parameters are chosen
from N(0,σs) and the mutation angles are cho-
sen from N(0,σa).
There is no maximum lifespan. Each model is
allowed to remain in the population so long as
its performance puts it in the top v models. Its
fitness is recalculated each generation.

APPENDIX D · HAUSDORFF DISTANCE
Our attempts to model data with fractals led very quickly to the concept of
Hausdorff distance. Hausdorff distance has been a staple in the field IFS ap-
proximation almost from day one, but is almost entirely unused within the field
of Machine Learning. To show that Hausdorff distance may have a wide appli-
cability in in many Machine Learning problems, we investigate its use in more
detail.

D.1 Learning a Gaussian mixture model

FIGURE D.1: The dataset used in the
experiment

To show the correlation between the Hausdorff dis-
tance and the likelihood, we perform a simple ex-
periment. We create a two-dimensional dataset
from a basic mixture model, and learn it with the
ES model as described in chapter 3.

For each run we create a collection of each
agent’s Hausdorff distance and log likelihood on
the dataset, plotting the first against the second in
a two dimensional log histogram 1

We found that if this is done without a learning al-
gorithm, by simply sampling random models, there
is no significant correlation between Hausdorff dis-
tance and likelihood. But as the algorithm pro-
gresses a clear (inverse) correlation can be seen. For this reason we have dis-
carded the first 100 generations (of a total of 500).

Figure D.2 shows the results. A clear inverse correlation can be seen.

D.1.1 Discussion

These experiments performed here show that this technique is promising. Since
the class of models for which it is applicable is distinct from the class of models
for which likelihood is applicable as a fitness funtion, different fields may benefit
from the use of Hausdorff distance as a fitness function. Two properties are
important for the use of Hausdorff distance:

§ The model must be defined over a metric space. This is more general than
the Euclidean space over which many probability models are defined. This
opens the door to applying Hausdorff distance to probability models over,
for instance, strings of text or protein sequences.

§ The model must be generative. If we can use the model to generate a set
1we divide the rectangle bounding all the datapoints into 500 × 500 bins, and we plot the log

value of the number of points hitting each bin according to a grayscale colormap.

(A) Learning by likelihood (B) Learning by Hausdorff distance

FIGURE D.2: The results of two experiments, using ES to learn a simple Gaussian mixture model using the log-
likelihood and the Hausdorff distance as a fitness function. The vertical axes show the log likelihood, the vertical
axes show the Hausdorff distance.

of random points, independently drawn from its probability distribution,
there is no need to be able to calculate the probability density of a given
point. For some models, like the IFS models in chapter 3, generating
random points is far easier than finding the density of a single point, or
the probability over a region.

APPENDIX E · NEURAL NETWORKS
This appendix describes a line of research which diverges from the main line of
this thesis, but is nevertheless interesting enough to report. The basic principle
behind it is to use a simple neural network in an iteration to generate fractal
probability distributions and classifications.

As we saw in chapter 1, dynamical systems can be a rich source of fractals. A
simple function f : Rd → Rd can be iterated to describe the orbit of some initial
point x0 ∈ Rd, so that x1 = f(x0) and xn+1 = f(xn). For just the right kind
of function, this orbit becomes chaotic, it fills a large region of the phase space
and never hits the same point twice. Furthermore, any uncertainty about the
position of x0 quickly balloons out until the only knowledge we have of the
points position at xn (for some n) is a general probability distribution over Rd

that is entirely independent of the initial point 1.

This distribution is equivalent to the probability distribution we get when we
choose a point x by choosing xt for a random point t chosen uniformly from
(0,n), where we let n go to infinity. This is called the attractor’s natural mea-
sure. For additional discussion of these concepts see section 1.0.1 and section
2.1.4.

In addition to an attractor’s natural measure, we can also use basins of attraction
to model fractals. If our function has multiple attractors, we can partition the
space based on where each initial point ends up under the iteration. For a map
with two attractors (chaotic or otherwise), we can color all points for which
the orbit tends to the first black and all point for which the orbit tends to the
second white. The black and white subsets of state space are called the basins
of attraction of the attractors. For various maps, the boundaries of these basins
have intricate fractal structure. The Mandelbrot set, the Newton fractal and the
magnetic pendulum are examples of such dynamic systems.

The basic principle behind the ideas in this appendix is that we can use a neural
network to represent the function f, and iterate that network to generate frac-
tals. Since a neural network is completely determined by a set of real values,
we can use evolution strategies to fit the network to data.

E.1 Density estimation

To make clear what we’re trying to do we will look at some examples. Our first
example, the Hénon attractor is described by the following iteration

xn+1 = yn + 1 − αxn
2

yn+1 = βxn

1with the exception of a vanishingly small set of initial points

APPENDIX E—NEURAL NETWORKS 100

Where the model with α = 1.4 and β = 0.3 has a strange attractor. (Alligood
et al., 1996)

FIGURE E.2: The Henon attractor.

For a more visually appealing example, we turn to
the Pickover attractors, described by the map:

xn+1 = sin(αxn) + β cos(αyn)

yn+1 = sin(γxn) + δ cos(γyn)

Where α, β, γ and δ are parameters. This map
can show a wide variety of structure for different
parameters. (Krawczyk, 2003)

The central notion behind these fractals (and many others), is that of an iterated
map. What we attempt in this section is to generalize this map to a neural
network, and to learn the parameters so that the attractor’s natural measure fits
given data.

We use a three-layer neural network with 2d input nodes, h hidden nodes,
and d output nodes, where d is the dimensionality of the space for which we
are trying to learn a probability distribution, and h is a model parameter. The
connections from the input layer to the hidden layer have a linear activation,
the connections from the hidden layer to the output have a sigmoidal activation
function:

f(x) =
1

1 + e−x

The first two layers also have bias nodes. During our iteration we continually
take the output from the network and use it as the values for the first d input
nodes. The other d input nodes remain constant (these are model parameters,
we include these so that the network can simulate the function behind the Man-
delbrot set, see the next section). To draw a random point from our model, we
first choose a random point from N(µ, Is), where µ and s are model parame-
ters. We then iterate the model with this point as input. After n iterations, we
take the d output values, which gives us a single point in Rd. Controlling the
distribution of the input points allows us make sure that all input points lie in
the basin of attraction of the required attractor.

(A) −2.03,−2.9, 1.44, 0.7 (B) −1.32,−1.99, 0.66, 0.66 (C) −1.12,−1.63, 0.9,−1.1

FIGURE E.1: Three pickover attractors. Captions show the values of α, β, γ and δ respectively.

APPENDIX E—NEURAL NETWORKS 101

We also assume that the points visited by a single orbit have the same frequency
as those returned by as many iid draws2 (if we exclude the first 50 or so points to
let the orbit get to its attractor). Under this assumption we can simply generate
a large dataset by generating a single long orbit, and ignoring the first few
points.

A single model is described by the weights of the network, the parameters µ and
s and the values of the d constant nodes. These are all real values, so a single
model is described by a single vector in Rm for some m. We use evolution
strategies, as described in chapter 3 to train this model. As in that chapter, we
use Hausdorff distance as a fitness function.

The results are shown in figure E.3

The results show some promise. The algorithm is able to learn strange attractors
to successfully cover a more than 1 dimensional region of the instance space.
Unfortunately it breaks down for the Hénon attractor. Our implementation of
the ES algorithm is unable to find the map that perfectly describes the attractor.

It may still seem tempting to try and construct a classifier from this model (as
we did with the IFS models in chapter 4. Unfortunately, the main drawback of
this model is that it is only generative. There is no simple way of calculating
the probability density of a point or the probability of a region under a given
attractor. This makes the model much less useful for machine learning purposes
than the IFS model. Its main use would be to reconstruct a discrete dynamical
system from observed data. As we have seen from the Hénon experiment, there
is still some way to go.

E.2 Classification

As noted before, fractals manifest themselves not only as the natural measures
of strange attractors, but also as the basin boundaries of attractors (strange or
otherwise). One example of this is the Mandelbrot set. Under iteration of the
complex map zn+1 = z2

n + c, some points are attracted to infinity (in whatever
direction), and for some points, the iteration remains bounded. Another exam-
ple is the Newton fractal, under its map, all points are attracted to one of three
point attractors.

The key insight here, is that these maps define a partition of the instance space.
In other words, they are classifiers. If we can generalize this concept using
neural networks, we can search for a map which fits a given dataset.

To cast this model into the mold of neural networks, we need two ingredients.
First we need a neural network to approximate the map. For this purpose,
we use exactly the same topology as described in the previous section. In this
context, we won’t need the distribution over initial points, as our initial point is
the input point we wish to classify. After iterating the map some 50 or 100 times,
we can be reasonably sure that the input point has reached its attractor. All we
need now is a neural network to map attractors to classes. Since attractors tend
to have wide margins between them, a simple network should be capable of

2This property is related to the notion of ergodicity

APPENDIX E—NEURAL NETWORKS 102

(A) A Sphere (500)

(B) The Hénon attractor (4000)

(C) A ball (4500)

(D) The Sierpinski Triangle (3500)

FIGURE E.3: Four results of density estimation. The data is shown on the left. The number in brackets shows the
generation that was chosen to display (either because some generation had a particularly good model, or to show
how early a good model appeared). For some of the images the levels have been tweaked to bring out the detail.

APPENDIX E—NEURAL NETWORKS 103

(A) The Newton fractal (9000) (B) The magnet fractal (1250) (C) A simple square dataset (9000)

FIGURE E.4: Three results of classification tasks.

representing this function.

In this case, the entire network is described by the weights of the neural net-
work. We learn, as before, using evolution strategies. This time we use the
symmetric error (over a subsample of the data) as the fitness function. Results
are shown in figure E.4.

Learning the Mandelbrot set

The results of the classifier are not very encouraging. Either the model is not
capable of expressing the required fractals, or the fractal solutions are too dif-
ficult to find. To shed some light on this, we try the following experiment on
the Mandelbrot set. We split the model into two neural networks and we train
each independently using backpropagation. For the map we draw a dataset a of
random points in the plane, and apply the function to find the required targets.
For the second part, we use the rule that point at a distance of 10 units from the
origin can be assumed to have diverged to infinity, and we train on a dataset of
points with these targets.

After 50 epochs of backpropagation over a dataset 10 000 points, we combine
the two models and create a plot of the resulting classifier. The results(figure
E.5) are remarkably close to the Mandelbrot set. This suggests that the neural
network model can successfully approximate fractals like the Mandelbrot set,
but these solutions are difficult to find for the evolutionary algorithm 3

3We also tried using backpropagation-through-time, with no better results.

APPENDIX E—NEURAL NETWORKS 104

FIGURE E.5: A neural network approximation of the Mandelbrot set. We sampled 10 000 points from N4(0, I) as
out input set (to represent the two inputs) and applied the Mandelbrot set’s map to them to create a target set.
On this set we trained a neural network with 20 hidden nodes for 50 epochs. For the second part of the network
we created a dataset of another 10 000 points drawn from N2(0, I · 25), and assigned classified each as “inside
the Mandelbrot set” if the point was within a radius of 10 units from the origin. Connecting these two networks,
and running it for 20 iterations, we get the image shown above.

REFERENCES

ALLIGOOD, K.T., SAUER, T., & YORKE, J.A. 1996. Chaos: an introduction to
dynamical systems. Springer Verlag.

ANDRLE, R. 1996. The west coast of Britain: statistical self-similarity vs. char-
acteristic scales in the landscape. Earth surface processes and landforms,
21(10), 955–962.

ASUNCION, A., & NEWMAN, D.J. 2007. UCI Machine Learning Repository.

BEYER, H.G., & SCHWEFEL, H.P. 2002. Evolution strategies–A comprehensive
introduction. Natural Computing, 1(1), 3–52.

BISHOP, C.M., et al. 2006. Pattern recognition and machine learning. Springer
New York:.

CHAN, K.S., & TONG, H. 2001. Chaos: a statistical perspective. Springer Verlag.

CHANG, S.H., CHENG, F.H., HSU, W., & WU, G. 1997. Fast algorithm for point
pattern matching: invariant to translations, rotations and scale changes.
Pattern Recognition, 30(2), 311–320.

DELIGNIERES, D., & TORRE, K. 2009. Fractal dynamics of human gait: a re-
assessment of Hausdorff et al.(1996)’s data. Journal of Applied Physiology,
90757–2008.

ELTAHIR, E.A.B. 1996. El Niño and the natural variability in the flow of the Nile
River. Water Resources Research, 32(1), 131–137.

EMBRECHTS, P., & MAEJIMA, M. 2002. Selfsimilar processes. Princeton Univ Pr.

FRANSES, P.H., & VAN DIJK, D. 2000. Nonlinear time series models in empirical
finance. Cambridge Univ Pr.

GRASSBERGER, P., & PROCACCIA, I. 1983. Measuring the strangeness of strange
attractors. Physica D: Nonlinear Phenomena, 9(1-2), 189–208.

GREENSIDE, HS, WOLF, A., SWIFT, J., & PIGNATARO, T. 1982. Impracticality
of a box-counting algorithm for calculating the dimensionality of strange
attractors. Physical Review A, 25(6), 3453–3456.

GRUNWALD, P. 2005. A tutorial introduction to the minimum description length
principle. Advances in minimum description length: theory and applications.

HEIN, M., & AUDIBERT, J.Y. 2005. Intrinsic dimensionality estimation of sub-
manifolds in R d. Page 296 of: Proceedings of the 22nd international confer-
ence on Machine learning. ACM.

REFERENCES 106

HIPEL, K.W., & MCLEOD, A.I. 1994. Time series modelling of water resources
and environmental systems. Elsevier Science Ltd.

HURST, H.E., BLACK, RP, & SIMAIKA, YM. 1965. Long-term storage: An experi-
mental study. Constable.

HUTCHINSON, J.E. 2000. Deterministic and random fractals. Complex systems.

HYNDMAN, R. (N.D.). 2009. Time series data library.

KORN, F., & PAGEL, B. 2001. On the ”dimensionality curse” and the ”self-
similarity blessing”. IEEE Transactions on Knowledge and Data Engineering,
13(1), 96–111.

KRAWCZYK, R.J. 2003. Dimension of Time in Strange Attractors. In: ISAMA and
Bridges 2003 Joint 2003 Conference, edited by R. Sarhangi. Citeseer.

KUMARASWAMY, K. 2003. Fractal Dimension for Data Mining.

LELAND, W.E., TAQQU, M.S., WILLINGER, W., & WILSON, D.V. 1994. On the
self-similar nature of Ethernet traffic (extended version). IEEE/ACM Trans-
actions on Networking (ToN), 2(1), 1–15.

LINKENKAER-HANSEN, K., NIKOULINE, V.V., PALVA, J.M., & ILMONIEMI, R.J.
2001. Long-range temporal correlations and scaling behavior in human
brain oscillations. Journal of Neuroscience, 21(4), 1370.

MANDELBROT, B. 1967. How long is the coast of Britain? Statistical self-
similarity and fractional dimension. Science, 156(3775), 636.

MEYER, M., & STIEDL, O. 2003. Self-affine fractal variability of human heart-
beat interval dynamics in health and disease. European journal of applied
physiology, 90(3), 305–316.

OTT, E., SAUER, T., & YORKE, J.A. 1994. Coping with chaos. Wiley New York.

PEITGEN, H.O., JÜRGENS, H., & SAUPE, D. 2004. Chaos and fractals: new
frontiers of science. Springer.

PETERS, E.E. 1994. Fractal market analysis: applying chaos theory to investment
and economics. Wiley.

PSYCHOL, J.E., GENERALIS, A.O.O., GENET, S.A., BIOL, M., BIOINFORMATICS,
BMC, ANAL, C.S.D., & CHEMOM, J. 1936. 1. Fisher R: The use of multiple
measurements in taxonomic problems. Ann of Eugenics, 7, 179–188.

RUBINSTEIN, R.Y., & KROESE, D.P. 2007. Simulation and the Monte Carlo
method. Wiley-Interscience.

RUDOLPH, G. 1992. On correlated mutations in evolution strategies. Parallel
problem solving from nature.

SCHROEDER, M. 1996. Fractals, chaos, power laws: Minutes from an infinite
paradise. Freeman New York.

REFERENCES 107

SCHWEFEL, H.P., & RUDOLPH, G. 1995. Contemporary evolution strategies.
Lecture Notes in Computer Science, 893–893.

SKRUTSKIE, MF, CUTRI, RM, STIENING, R., WEINBERG, MD, SCHNEIDER, S.,
CARPENTER, JM, BEICHMAN, C., CAPPS, R., CHESTER, T., ELIAS, J., et al.
2006. Two Micron All Sky Survey (2MASS). The Astronomical Journal, 131,
1163–1183.

SOMERVILLE, P.N. 1998. Numerical computation of multivariate normal and
multivariate-t probabilities over convex regions. Journal of Computational
and Graphical Statistics, 529–544.

TAKENS, F. 1985. On the numerical determination of the dimension of an at-
tractor. Lecture notes in mathematics, 1125, 99–106.

THEILER, J. 1990. Estimating fractal dimension. Journal of the Optical Society
of America A, 7(6), 1055–1073.

TRAINA JR, C., TRAINA, A., WU, L., & FALOUTSOS, C. 2000. Fast feature se-
lection using fractal dimension. In: XV Brazilian Symposium on Databases
(SBBD).

UMEYAMA, S. 1991. Least-squares estimation of transformation parameters be-
tween twopoint patterns. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 13(4), 376–380.

WERBOS, PJ. 1990. Backpropagation through time: what it does and how to do
it. Proceedings of the IEEE, 78(10), 1550–1560.

WITTENBRINK, C.M., LANGDON, G.G.J., & FERNANDEZ, G. 1996. Feature ex-
traction of clouds from GOES satellite data for integrated model measure-
ment visualization. Pages 212–222 of: Proceedings of SPIE- The International
Society for Optical Engineering., vol. 2666. Citeseer.

WONG, A., WU, L., & GIBBONS, P.B. 2005. Fast estimation of fractal dimension
and correlation integral on stream data. development, 5, 10.

IMAGE ATTRIBUTIONS

figure 1.3 The Hilbert curve. The image was adapted from the file available at Wiki-
media Commons: http://commons.wikimedia.org/wiki/File:Hilbert_
curve.png, originally created by Zbigniew Fiedorowicz. This image is li-
censed under the Creative Commons Attribution ShareAlike 3.0 License.
The license can be found here: http://creativecommons.org/licenses/
by-sa/3.0/

figure 1.7a The Lorenz attractor. This image was taken from Wikimedia Commons:
http://commons.wikimedia.org/wiki/File:Lorenz_attractor.svg as
created by user Dschwen. It is distributed under the Creative Commons
Attribution ShareAlike 3.0 License. The license can be found here: http:
//creativecommons.org/licenses/by-sa/3.0/

figure 1.7b The Rössler attractor. This image was taken from Wikimedia Commons
http://commons.wikimedia.org/wiki/File:Roessler_attractor.png

as created by user Wofl. It is distributed under the Creative Commons At-
tribution ShareAlike 2.5 License. The license can be found here: http:

//creativecommons.org/licenses/by-sa/2.5/deed.en

figure 1.7c A Pickover attractor. This image was adapted from a file available at Medi-
aWiki Commons: http://commons.wikimedia.org/wiki/File:Atractor_
Poisson_Saturne.jpg as added by user Alexis Rufatt. It is distributed un-
der the Creative Commons Attribution ShareAlike 2.5 License. The license
can be found here: http://creativecommons.org/licenses/by-sa/2.

5/deed.en

http://commons.wikimedia.org/wiki/File:Hilbert_curve.png
http://commons.wikimedia.org/wiki/File:Hilbert_curve.png
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://commons.wikimedia.org/wiki/File:Lorenz_attractor.svg
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://commons.wikimedia.org/wiki/File:Roessler_attractor.png
http://creativecommons.org/licenses/by-sa/2.5/deed.en
http://creativecommons.org/licenses/by-sa/2.5/deed.en
http://commons.wikimedia.org/wiki/File:Atractor_Poisson_Saturne.jpg
http://commons.wikimedia.org/wiki/File:Atractor_Poisson_Saturne.jpg
http://creativecommons.org/licenses/by-sa/2.5/deed.en
http://creativecommons.org/licenses/by-sa/2.5/deed.en

INDEX

Lp norm, 19

Abalone dataset, 85
Affine transformation, 35, 89
Anti-persistence, 25
Attractor, 6
Autocorrelation, 25

Bacterial colonies, 73
Basin of attraction, 6, 7, 99
Basketball dataset, 82
Bayesian Classifier, 50
Blessing of self similarity, 10
Border, 3
Box counting dimension, 14
Box counting estimator, 19
Brownian motion, 24

C4.5, 48
Cantor set, 22, 31, 81
Cauchy distribution, 24
Chaos game, 5, 9, 33
Chaos theory, 6
Chebyshev distance, 19
Chi-squared distribution, 89
China, 81
Clustering, 74
Coastline, 3
Code space, 32
Correlation dimension, 16, 17
Correlation integral, 17, 20, 27
Correlation integral estimator, 20
Correlogram, 25
Covering, 13
Curse of dimensionality, 10

Diameter, 13
Dimension, 2

Box counting, 14
Correlation, 17
Embedding, 9, 75
Fractal, 75
Generalized, 15
Hausdorff, 13, 25
Information, 16
Point-wise, 17

Renyi, 15
Scaling, 40
Topological, 23

Dow Jones index, 9
Dynamical Systems, 6
Dynamical systems, 23

EEG, 26, 73
Embedding dimension, 9, 10
Entropy, 16
Estimator

Box counting, 19
Correlation integral, 20
Takens, 21

Ethernet traffic, 26
Evolution strategies, 36, 99, 101, 103
Exchange rates dataset, 83

Features, 8
Financial timeseries, 26
Fitness, 34
Forest cover dataset, 85
Fractal dimension, 75

Galaxy cluster distribution dataset, 82
Gaussian mixture model, 97
Generalized dimension, 15

Hausdorff dimension, 13, 25
Hausdorff distance, 34, 50, 56, 74, 97,

101
Hausdorff measure, 14
Heartbeat, 26
Hilbert curve, 2
Hurst exponent, 25

IFS Measures, 32
Information dimension, 16
Information entropy, 16
Initial image, 32
Instances, 8
Iris dataset, 85
Iterated Function Systems, 5, 15, 31

k-nearest neighbours, 47
Koch curve, 1, 31, 57, 81
Kolmogorov complexity, 58

111

Lacunarity, 13
Lebesgue measure, 16
Likelihood function, 34
Limit set, 2, 5
Long dependence, 25

Magnetic pendulum, 85, 99
Mandelbrot set, 84, 99
Mandelbrot, Benôıt, 3, 23
Map, 31
Maximum likelihood estimator, 21
MDL, 45
Mean measure, 62, 71
Mean squared error, 91
Measure

Hausdorff, 14
IFS, 32
Lebesgue, 16
Multifractal, 16
Natural, 16

Minimum description length, 45
Mixture model, 97
Mixture of Gaussians, 35, 81
Model parameters, 36
Multifractal distributions, 16
Multifractal measures, 16
Mutation, 36

Naive Bayes, 47
NASA, 86
Nasdaq Composite index, 9
Natural measure, 16, 99
Neural networks, 99
Newton fractal, 84, 99
Non-Euclidean, 12

Open set condition, 40
Orbit, 6

Parameter space, 32
Pendulum, 6
Persistence, 25
Phase space, 6
Point-wise dimension, 17
Population density dataset, 81
Pre-factor, 12, 22
Probabilistic rounding, 94

Random fractal, 9, 60
Random Iterated Function System, 60
Random measure, 61

Random number generator, 58
Random set, 60
Random walk, 24
Range, 25
Recombination, 36
Renyi dimensions, 15
Rescaled range, 25
Richardson, Lewis Fry, 3
RIFS measure, 61
RIFS set, 60
Road intersections dataset, 82

Scaling dimension, 40
Scaling law, 31
Score, 22
Self similarity, 3, 5, 23
Self-similarity

Statistical, 57
Sierpinski triangle, 2, 9, 15, 31, 57, 81
Similarity transformation, 91
Similitude, 40, 56, 67, 68, 92
Simple representation, 35, 73
Singular Value Decomposition, 91
Snowflakes, 73
Space shuttle dataset, 86
Standard normal distribution, 42
Statistical self-similarity, 57
Strange attractor, 6, 23, 99
Strategy parameters, 36
Sufficient statistic, 59
Sunspots dataset, 83
Support, 15
Symmetric error, 56

Takens estimator, 21
Three dataset, 81
Topological Dimension, 23
TSR representation, 35, 92

US income census dataset, 85

	Summary
	Introduction
	Machine learning
	Fractals and machine learning

	Data
	Dimension
	Self similarity
	Dimension measurements

	Density estimation
	The model: iterated function systems
	Learning IFS measures
	Results
	Gallery
	Extensions

	Classification
	Experiments with popular classifiers
	Using IFS models for classification

	Random fractals
	Fractal learning
	Information content
	Random iterated function systems

	Conclusions
	Acknowledgements
	Common symbols
	Datasets
	Point sets
	Classification datasets

	Algorithms and parameters
	Volume of intersecting ellipsoids
	Probability of an ellipsoid under a multivariate Gaussian
	Optimal similarity transformation between point sets
	A rotation matrix from a set of angles
	Drawing a point set from an instance of a random measure
	Box counting dimension
	Common parameters for evolution strategies

	Hausdorff distance
	Learning a Gaussian mixture model

	Neural networks
	Density estimation
	Classification

	References
	Image attributions
	Index

