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knowledge and learning

The purpose of this talk is to introduce two things. 
First of all myself. I've worked here for a while, 
but I've recently started as assistant professor, so I 
thought I'd take this opportunity to set out the 
sort of things I plan to work on.

Second, the learning and reasoning group. This is 
one half of the recently split up KR&R group, of 
which I am a member. This group will focus on 
the interplay of machine learning and (symbolic) 
reasoning. This talk is my view on this 
intersection. They are very much my specific 
opinions, and other member of the group may say 
very different things.
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in non-artificial intelligence in artificial intelligence

knowledge/belief: 
• procedural 
• by acquaintance 
• descriptive 

• internal 
• external 

• linguistic 
• symbolic 

When we produce non-artificial intelligence (also 
known as children), combining knowledge and 
learning is the most natural thing in the world. A 
child may learn through experience that touching 
a hot pan hurts, but a concerned parent will try to 
limit such personal experience as much as 
possible. We do this by distilling our own 
experiences into knowledge representations (in 
this case the phrase "touching a hot pan will 
hurt") and hoping that the child heeds our 
warnings.

So why then, when it comes to artificial 
intelligence do large parts of the learning 
community seem to reject the help of such 
symbolic prior knowledge? Why do we insist on 
learning everything from scratch?

Note that I'm casting a slightly wider net with the 
definition of knowledge than the common 
definition of a "justified true belief", since the 
definition doesn't allow us to distinguish between 
the beliefs that are knowledge and those that 
aren't before we use them.
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where does knowledge come in?

3

prior 
or prior-like

data
statistical 

model

design

training

PRIOR Knowledge Knowledge as DATA MODEL as Knowledge

I'd like to discuss today what knowledge in 
general can do for us, and what symbolic 
knowledge specifically can (and can't) do. 

Here is a simple way to structure the roles 
knowledge might play in learning processes into 
three different categories. The simplest way to 
understand them is by analogies to the way 
children make use of knowledge when they learn.

❖ The first is knowledge as a prior. This could be a 
prior probability distribution, but it could also 
be something that behaves like a prior like a 
regularization loss term, or a particular weight 
initialization. When we teach children, we often 
tell them knowledge directly that we hope may 
be useful as prior information. For instance "if 
you touch a hot frying pan, it'll hurt". It's up to 
the child to decide whether this knowledge 
applies in a particular setting (is this a pan, it it 
hot, and if so, does the rule apply in this setting)

❖ Knowledge can also be the input to a learning 
mechanism. From many different instances of 
specific knowledge, we may for example infer 
more general rules, or certain consequences. for 
instance, a child that is told that a hot frying 
pan hurts and that a hot pot hurts, may infer 
that it is likely that all hot cookware hurts, 
regardless of shape.

❖ Finally, the output of a learning process may 
also be considered knowledge. This could be as 
simple as "this email is spam", but we are 
increasingly capable of learning rich structured 
outputs. This corresponds to when our child 
learns to speak and is able to confer the 
knowledge it has learned to other people, for 
instance through language.

All three are goals of the L&R group (and of 
myself), but the one I'd like to focus on today is 
the first: using prior knowledge to help us make 
models better before they start learning.
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The benefits of prior knowledge
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Out-of-distribution learning 
Low-shot learning 
Interpolation

Disentanglement

Data-efficient learning

Tian, Y., Zhang, W., Zhang, Q., Cheng, J., Hao, P., & 
Lu, G. (2018, December). Co-consistent 
Regularization with Discriminative Feature for 
Zero-Shot Learning. In International Conference 
on Neural Information Processing (pp. 33-45). 
Springer, Cham.

Nie, W., Karras, T., Garg, A., Debnath, S., Patney, A., 
Patel, A., & Anandkumar, A. (2020, November). 
Semi-supervised StyleGAN for 
disentanglement learning. In International 
Conference on Machine Learning (pp. 7360-7369). 
PMLR.

Winkels, M. Group-Convolutions: Overcoming 
the data challenge in medical image analysis. 
MSc thesis 2019

Here are three of the places where knowledge 
might help.
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The benefits of symbolic prior knowledge
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Out-of-distribution learning 
Low-shot learning 
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Disentanglement
Daza, D., Cochez, M., & Groth, P. (2021, April). Inductive Entity 
Representations from Text via Link Prediction. In Proceedings 
of the Web Conference 2021 (pp. 798-808).

Data-efficient learning
Wilcke, X. et al. (2017). The knowledge graph as the 
default data model for learning on heterogeneous 
knowledge. Data Science, 1(1-2), 39-57.
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Downside: highly use case specific. 
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The downsides of symbolic prior knowledge

❖ The platypus problem 

❖ The rhinoceros problem 

❖ The chair problem 

❖ The spork problem

6

Let's look at four examples of how we use 
symbolic knowledge in everyday life that show 
the downsides of relying too much on it. 
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The platypus problem

No mammals lay eggs. Only birds have bills.

7

This doesn't mean that these rules are useless, just 
that there are occasional exceptions. More 
importantly, there will be occasional exceptions 
that we cannot account for a-priori. 

We will observe them in the wild, and we will 
need to decide on the fly whether to trust our 
knowledge, or our eyes.
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The rhinoceros problem

Rules require context.

8Wang, S., Raad, J., Bloem, P., & Van Harmelen, F. (2021, June). Refining Transitive and Pseudo-Transitive Relations at Web Scale. In ESWC.

With a little creativity, I believe you can come up 
with potential counterexamples to any rule. This 
was a famous point of disagreement between 
Russell and Wittgenstein when they first met. The 
latter asserted that there was no such thing as a 
"truly knowable empirical fact". Russel suggested 
the statement "There is no Rhinoceros in this 
room." Apparently Russell even suggested 
looking under the desks. Wittgenstein's point 
appears to have been that it was merely very 
unlikely that was a rhinoceros in the room but not 
fully impossible.

I'm on Wittgenstein's side. We don't need to go so 
far as to image microscopic or invisible 
rhinoceros. With a little creativity, we can, for 
instance, imagine the possibility that one of the 
people present had a rhinoceros keychain. That 
would be a coincidence, but certainly not 
impossible. 

You may argue that this is cheating. Russell was 
surely referring to actual rhinoceros. But for our 
purposes, at least, this is an important point. If we 
are talking about small probabilities, we must 
consider the possibility that the original statement 
was poorly phrased, or ambiguous. It's truth 
depends on our interpretation and the context in 
which we apply it.

When we start using knowledge in the real world 
this distinction very quickly stops being academic. 
The way we frame symbolic knowledge is usually 
extremely dependent on the context in which we 
use it. A statement of knowledge is almost always 
tailored to the specific context in which it is going 
to be used.
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The chair problem  
cf. soup, games

Family likeness

9

"It's like there's some inherent ability within 

everybody to tell what is and isn't soup, but 

there's no rules."

"There is no characteristic that is 

common to everything that we 

call games; but we cannot on the 

other hand say that ‘game’ has 

several independent meanings 

like ‘bank’. It is a family-likeness 

term"

Another problem is that there are certain concepts 
that are simply difficult to define in simple terms. 
We all know when something is a chair, but when 
you start making rules, like "it must have legs", 
"you can sit on it" or so on, it becomes very easy to 
come up with counterexamples. Things that break 
the rules and are very clearly chairs, or things that 
satisfy all the rules and are very clearly not.

Wittgenstein used games as the prime example of 
this type of concept, and called them family-
likeness terms (Familienänlichkeiten).

If it's so difficult to define precisely what makes 
something a chair, a soup or a game, why is it that 
we use these concepts so easily? Probably more 
easily than we do concepts with very precise 
definitions, like "right-of-way", "finite-state-
machine" or "submission deadline"? I think the 
answer is that we use learning. We see two or three 
examples of a chair and we get the general idea. 
As we go through life we see more examples and 
counter-examples and we refine our internal 
representations. 
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The spork problem

10

"A spork is a combination of a spoon and a fork."

"There is such a thing as a spork."

Finally, and most importantly, there's the spork 
problem. Imagine that you don't know what a 
spork is. I can tell you that there is such a thing. 
Even though you don't know what it is, or 
anything about it, you have no problem 
processing the information that such a thing 
exists. As we speak, you are creating space in your 
head for the concept of a spork and perhaps 
making some educated guesses about what it 
might be.

Then, as I tell that it's a combination of a spoon 
and a fork, you start to fill in the blanks. You now 
know its approximate shape and size, and you 
know what it's for. There are a few ways one 
might combine a spoon and a fork, so you still 
don't know exactly what it looks like, but you can 
already narrow it down to a small and finite 
number of possibilities.

Then I show you a picture and your idea of a 
spork is complete. Now, whenever you come 
across one in the rest of your life, you can 
recognize it. Even though you'll probably never  



come across one that looks exactly like this.

On the fly, with zero effort, based on almost no 
knowledge, you have created a new concept and 
tied it into the rest of your internal semantic 
network.
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A registration

A division of the world into a discrete collection of objects, 
concepts and relations. 

"It is insufficient for AI [...], to assume that intelligence is a capacity 
of systems deployed in an ontologically structured world. 
Ontology is an achievement of intelligence, not a 
presupposition."  
—Brian Cantwell-Smith

11

I believe all of these issues emerge from one single 
problem in the way symbolic knowledge is used 
on all neurosymbolic approaches being studied 
today.

The problem of registration. This is a phrase 
coined by philosopher Brian Cantwell-Smith. An 
intelligence's registration is the way it takes its 
collection of raw, continuous input signal, and 
organizes them into a (mostly) discrete picture of 
the world. In short, the way it maps observations 
to symbols.

The point that Cantwell-Smith makes is that 
building a registration, including the vocabulary 
of symbols must be part of a true intelligence. An 
agent must be allowed to build its own 
registration, it's own collection of symbols, 
introducing new ones as the need arises. 

If we take our registration, our ontologies, and 
limit the agent to that particular registration of the 
world, it can never be truly intelligent, and one or 
all of the four problems we saw before will 
emerge. 

That doesn't mean we can't use our own 
knowledge to help intelligent agents emerge, only 
that our knowledge can't form the internal 
registration of the agent. It must be outside of the 
agent, and the agent must be able to accept or 
reject it as it chooses.
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How do we allow an algorithm to develop its own 
registration, while guiding it with the symbolic 
knowledge we have?

12

of 18

A simple option: externally

13

Transformer model Data augmentation

<latexit sha1_base64="ljQsT4u4xF10868lNBA63Wb0PH8="></latexit>

8x Human(x) ! Mortal(x)

Human(Socrates)

—

Mortal(Socrates)

"All humans are mortal. There is a human called Socrates. Socrates is mortal."

"There once was a person called Scorates. Since people are mortal, so was Socrates."
(sic)

"There once was a human called Socrates. He was mortal. This stands to reason, since 
all men are mortal"
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More complex: internally

14

transitive inference problems (which depend on the hippocampus
[Bunsey and Eichenbaum, 1996; Dusek and Eichenbaum, 1997])
require stimuli to be represented on an abstract ordered line,
such that A>B and B>C implies A>C. Similarly, abstraction of
hierarchical structure permits rapid inferenceswhen encountering
new social situations.

Structural generalization offers dramatic benefits for new
learning and flexible inference and is a key issue in artificial intelli-

gence. One promising approach is to maintain ‘‘factorized’’ repre-
sentations inwhichdifferentaspectsof knowledgeare represented
separately andcan thenbeflexibly re-combined to represent novel
experiences (Higgins et al., 2017). Factorizing the relationships be-
tweenexperiences fromthecontent of eachexperiencecouldoffer
apowerfulmechanism forgeneralizing this structural knowledge to
new situations. Notably, exactly such a factorization exists be-
tween sensory and spatial representations in lateral (LEC) and
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Figure 1. Spatial and Relational Inferences Cast as Structural Generalization
(A–C) Structured relationships exist in many situations and can often be formalized on a connected graph, e.g., (A) social hierarchies, (B) transitive inference, and

(C) spatial reasoning. Often the same relationships generalize across different sets of sensory objects (e.g., left/right in A). This transferable structure allows quick

inference, e.g., seeing only the blue relationships allows you to infer the green ones.

(D) Our task is predicting the next sensory observation in sequences derived from probabilistic transitions on a graph. Each node has an arbitrary sensory

experience, e.g., a banana. An agent transitions on the graph observing only the immediate sensory stimuli and associated action taken, e.g., having seen

motorbike / book / table / chair, it should predict the motorbike next if it understands the rules of the graph.

(E) If you know the underlying structure of social hierarchies, observing a new node (in red) via a single relationship, e.g., Emily is Bob’s daughter, allows immediate

inference about the new node’s (Emily’s) relationship to all other nodes (shown in black/gray).

(F) Similarly for spatial graphs observing a new node on the left (solid red line) also tells us whether it is above or below (dashed red lines) other surrounding nodes.

(G) Our agent performs this next step prediction task in many worlds sharing the same underlying structure (e.g., 6- or 4-connected graphs), but differing in size

and arrangement of sensory stimuli. The aim is to learn the common structure in order to generalize and perform quick inferences.

(H) Knowing the structure allows full graph understanding after only visiting all nodes, not all edges. Here, only 18 steps (red line) are required to infer all 42 links.

(I) An agent that knows structure (node agent) will reach peak predictive performance after it has visited all nodes, quicker than one that has to see all transitions

(edge agent). Icons from https://www.flaticon.com. See also Figure S1.

ll
OPEN ACCESS

1250 Cell 183, 1249–1263, November 25, 2020

Article

Whittington et al. (2020). The Tolman-Eichenbaum machine: Unifying space and relational memory [...]. Cell, 183(5), 1249-1263.
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First results: Probing the representations of named 
entities in Transformer-based Language Models  
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(a) Accuracy for News Topic Classification.

random-mention
frequency

type-invariant
mask

random-tokens
original
0

0.1

0.2

U
nc

er
ta

in
ty

From init.
Fine-tuned

(b) Uncertainty for News Topic Classification.
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(c) Loss for Masked Language Modeling.
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(d) Uncertainty for Masked Language Modeling.

Figure 1: Performance metrics and uncertainty estimates obtained while performing Topic Classification and
Masked Language Modeling for our entity-mention substitution experiments using our RefNews dataset. Error Bars
display 95% confidence intervals indicating sensitivity to random initialization.

Task Training Variable random-mention type-invariant

TopicCLF From init. Frequency 0.00 ± 0.01 -0.01 ± 0.02
Topic 0.10 ± 0.01 0.17 ± 0.01

Fine-tuned Frequency 0.00 ± 0.01 -0.02 ± 0.01
Topic 0.10 ± 0.01 0.19 ± 0.01

MaskedLM Pre-trained Frequency 0.15 0.19
Topic -0.03 0.00

Fine-tuned Frequency 0.07 ± 0.00 0.13 ± 0.00
Topic -0.03 ± 0.01 -0.02 ± 0.01

Table 2: Pearson correlation between difference in frequency/topic and the model’s loss while performing masked
language modeling or topic classification for our entity-mention substitution experiments.
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(a) Randomly initialized (untrained) model compared to topic
classifier trained from initialization.

0.65 0.7 0.75 0.8 0.85 0.9

1

2

3

4

5

6

Pre-trained
MaskedLM
TopicCLF

(b) Pre-trained and fine-tuned models.

Figure 2: Diagnostic classifier F1 score (x-axis) on NER
for each layer (y-axis) of various models. Error bars
display 95% confidence intervals indicating sensitivity
to random initialization (of the diagnostic model, and in
the case of the fine-tuned models also the model being
probed).

with another mention leaves a sentence that is more l 434

coherent than when it is replaced with random to- l 435

kens. Despite this, we observe lower accuracy for l 436

random-mention. It seems that for topic classifi- l 437

cation the model is capable of ignoring random l 438

tokens, but cannot do the same for the random men- l 439

tions. Instead, the model’s predictions are consid- l 440

erably different with the substitute entity mentions, l 441

decreasing the accuracy as a result. From the model l 442

uncertainty in Figure 1b we can see that the drop l 443

in accuracy is not caused by increased uncertainty. l 444

We interpret this as evidence that the model uses l 445

entity mentions in its prediction. l 446

Unfortunately, we cannot conclude the same l 447

from the masked language modeling results in Fig- l 448

ure 1c. For this task the performance does not l 449

decrease going from random-tokens to random- l 450

mention. We also cannot make the same argu- l 451

ment when comparing between mask and random- l 452

mention, because although the performance does l 453

decrease, this may be explained by the uncertainty l 454

also going up. However, results from the diagnostic l 455

classifiers (Figure 2) do indicate that the identifica- l 456

tion of entities is beneficial for masked language l 457

modeling, since their performance increases com- l 458

pared to the Random and Pre-trained baselines. l 459

Furthermore the diagnostic classifiers indicate l 460

that entities are identified in pre-trained and fine- l 461

tuned language models to a much greater degree l 462

than in models trained from initialization for topic l 463

classification. l 464

In conclusion, entities are identified and used by l 465

the fine-tuned models for the topic classification l 466

task. However, for models trained from initializa- l 467

tion entities are not easily identifiable from their l 468

representations. Despite that, their presence is still l 469

used by the model to perform the topic classifi- l 470

cation task. For masked language modeling we l 471

only have evidence of them being identified, but l 472

not of them being used. Thus, the answer to RQ1 l 473

(“When entities are mentioned in the input text, are l 474

they identified and used by Transformer-based lan- l 475

guage models?”) is that entities are identified by l 476

language models, but whether they are used in prac- l 477

tice depends on the task that the model is fine-tuned l 478

for. l 479

Looking at the type-invariant substitution in Fig- l 480

ure 1a we can see that there is no significant differ- l 481

ence in accuracy compared to the random-mention l 482

substitution. By comparing to random-tokens how- l 483

ever, we can see the same pattern as we saw for l 484

7
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