
Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA)
http://hdl.handle.net/11245/2.173343

File ID uvapub:173343
Filename Thesis
Version final

SOURCE (OR PART OF THE FOLLOWING SOURCE):
Type PhD thesis
Title Single sample statistics: Exercises in learning from just one example
Author(s) P. Bloem
Faculty FNWI: Informatics Institute (II)
Year 2016

FULL BIBLIOGRAPHIC DETAILS:
 http://hdl.handle.net/11245/1.532927

Copyright

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or
copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content licence (like
Creative Commons).

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
(pagedate: 2016-09-29)

http://hdl.handle.net/11245/2.173343
http://hdl.handle.net/11245/1.532927
http://dare.uva.nl

SINGLE SAMPLE STATISTICS
exercises in learning from just one example

single sam
ple statistics

peter bloem

peter bloem

SINGLE SAMPLE STATISTICS
exercises in learning from just one example

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. dr. D.C. van den Boom

ten overstaan van een door het College voor Promoties ingestelde commissie,

in het openbaar te verdedigen in de Agnietenkapel

op dinsdag 31 mei 2016, te 10 uur

door

Peter Bloem

geboren te Haarlem

Promotor: prof. dr. P.W. Adriaans Universiteit van Amsterdam

Copromotor: dr. S. de Rooij Universiteit van Amsterdam

Overige leden: prof. dr. L.F.C. Antunes Universidade do Porto

 prof. dr. P. D. Grünwald Centrum voor Wiskunde en Informatica

 prof. dr. F.A.H. van Harmelen Vrije Universiteit Amsterdam

 prof. dr. ir. C.T.A.M. de Laat Universiteit van Amsterdam

 prof. dr. A.P.J.M. Siebes Universiteit Utrecht

 dr. J. Vreeken Universität des Saarlandes

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The research reported in this thesis has been carried out

under the auspices of SIKS, the Dutch Research School for

Information and Knowledge Systems.

This research was supported by the Dutch national pro-

gram COMMIT.

CONTENTS

1 Introduction 1

2 Setting the stage 13
2.1 Effectiveness . 13
2.2 Kolmogorov complexity 19
2.3 The no-hypercompression inequality 24

3 A safe approximation of Kolmogorov complexity 29
3.1 The two worlds of Kolmogorov complexity 31
3.2 Turing machines and algorithmic probability 32
3.3 Model-bounded Kolmogorov complexity 34
3.4 Safe approximation 36
3.5 A safe, computable approximation of K 39
3.6 Approximating normalized information distance . . 43
3.7 Discussion . 45

4 The problem of sophistication 47
4.1 Sophistication . 48
4.2 Notation . 51
4.3 Inefficient indices 53
4.4 Balancing under- and overfitting 56
4.5 Discussion and conclusion 66

5 Compression as a measure of network motif relevance 71
5.1 Network Motifs . 72
5.2 Model selection by codelength 77
5.3 Encoding with motifs 80
5.4 Null models . 84
5.5 Experiments . 89
5.6 Conclusion . 94

6 An EM algorithm for the fractal inverse problem 105
6.1 Fractals . 106

6.2 The IFS model . 111
6.3 The EM algorithm for IFS models 115
6.4 Results . 122
6.5 Discussion . 127

A Proofs and derivations 149

B Fractal experiments: full results 161

SUMMARY

What can be learned from a single example? If we are faced with
some complex process, producing large intricate constructs, but
we are only given one example of its output, can we still draw
conclusions about the source, or ascribe meaning to the patterns
we find? This is by no means just an academic exercise: we only
have one Internet, for example, only one climate system and only
one global financial system. What assumptions must we make
about the processes that generated them, in order to learn about
their structure? What can we do if we make no assumptions
at all? Each chapter of this dissertation addresses an aspect of
this question, starting with a high-level theoretical approach, and
gradually working towards more practical aspects.

The first chapters provide an informal introduction to the prob-
lem, and the tools we use to study it. In Chapter 3, we view
the problem in its most general form, using the theory of Kol-
mogorov complexity. In using Kolmogorov complexity, we make
only one assumption: that the source of the data can be under-
stood as a computational process. Under this assumption, it gives
us an objective definition of the data’s information content. As
is well known, the incomputable Kolmogorov complexity can be
bounded from above by computable means. We show that with
additional assumptions about the source of the data, such as its
computational complexity, we can compute a value that is not just
an upper bound, but also, with high probability, a good approx-
imation. We also analyze functions derived from Kolmogorov
complexity, such as the normalized information distance: we show
that good approximations to Kolmogorov complexity do not nec-
essarily translate to good approximations of derived functions,
but with careful analysis, we can provide some guarantees.

Chapter 4 deals with model selection. Given only a single
sample, what can we say about the complexity of its source?
How much of the data is structure, and how much is random?
This question has been studied under many names, like sophisti-

cation, the algorithmic sufficient statistic and effective complexity.
We show that all these approaches have fundamental problems:
the functions proposed cannot correspond to the intuition that
inspired them. It remains an open question whether objective
model selection in this setting is possible, but we provide several
arguments that suggest the answer is negative.

In Chapter 5 we turn to a practical application of the single
sample setting: large complex graphs. These are complex objects,
with rich internal structure, but no straightforward way to divide
the data into chunks with similar properties. One solution is to
find small, frequently recurring subgraphs, known as network mo-
tifs. However, the fact that a subgraph is frequent is by itself no
indication that it is a meaningful pattern: many subgraphs occur
frequently simply by chance. To show that a particular subgraph
is special, we must show that its occurrences are unexpected for
a particular source. Using the Minimum Description Length prin-
ciple, the more practical cousin of Kolmogorov complexity, we
develop a fast way to judge whether such subgraphs are unex-
pected. This allows motif analysis to scale to much larger graphs
than was possible with traditional techniques.

Where the previous chapter studies the recurrence of similar
structures at the same scale, Chapter 6 investigates self-similarity:
the recurrence of the same structure across scales. This is often
a crucial assumption in graph analysis: we cannot analyze the
whole of the World Wide Web, so we assume that a large sub-
graph, extracted from a random walk, has the same properties
as the whole. Learning self-similar structure is known as the
fractal inverse problem, a long-standing open question. We an-
alyze the fractal inverse problem in the domain of point patterns
in Euclidean spaces, and show that it can be solved using the
Expectation-Maximization algorithm.

The field of statistics is divided neatly by the type of data un-
der analysis. The available models and techniques differ sharply
from times series to sets of iid samples, to geospatial information.
The single sample setting provides us with a general perspective:
it shows that in all cases we are dealing with a single, finite bi-
nary string, and we are hoping to model it with a computable
probability measure. The internal structure of this binary string

is an assumption we make about its source, usually to let us di-
vide the data in chunks, so that the similarities and differences
between these chunks will let us reconstruct the source from the
data. This view is instructive when we are faced with modern
types of data like complex graphs, where the question of how
to subdivide the data is not easily answered. The perspective of
single sample statistics gives us a starting point: we can always
consider the data a single sample from some computable distri-
bution.

He waved a photograph of the Phaistos Disc. ‘The peo-
ple who made this. Four thousand years ago! They used
stamps! And if they were such pre-alfabetic genuises, then
surely this must say something interesting, mustn’t it? So
I should be the first to read it, shouldn’t I? The miserable
thing is we have only this one specimen. But you don’t
make stamps for just one tablet, do you?’ [. . .]
‘Let me explain my predicament to you.’ He picked a news-
paper up from the floor, and scribbled something in the
margins. ‘Write down the following number: eighty-three
billion one hundred and ninety-one million twenty-four
thousand five hundred and sixty-seven.’ And after she had
written it down on the sheet she used for her notes: ‘Now
imagine an aboriginal cryptographer in an ancient Aus-
tralian forest, who doesn’t even know that those are num-
bers; all he sees is eleven incomprehensible marks: 8 3 1
9 1 0 2 4 5 6 7. They’re all different, except the repeated
symbol 1. Wat can he conclude from this? Nothing at all.
That’s the point I’m at now. Imagine that he suddenly has
the brilliant idea that they’re numbers, how is he supposed
to figure out that they’re alphabetically ordered, Dutch nu-
merals from one to ten? How is he supposed to figure out
that “acht” is the name of the number 8? He doesn’t even
know the decimal system, let alone the Dutch language.
—The Discovery of Heaven, Harry Mulisch [69]

1 · INTRODUCTION

In the early chapters of the novel The Discovery of Heaven we
meet Onno Quist: a disorganized, left-wing philologist, who has
become obsessed with a mysterious artifact discovered centuries
ago in the ruins of the Minoan palace on Crete, the Phaistos disc.
The disc is real. It contains a spiralling sequence of 242 sym-
bols, from an alphabet of 45 distinct signs. Quist is convinced
that it holds an important message, and is sufficiently lacking in
humility to decide that he must be the one to decipher it. But the
strange markings that adorn the Phaistos disc are not found any-
where else. The disc is the only example of this kind of writing.

Quist is living a scientist’s nightmare. Not for nothing are
studies with small sample sizes easily dismissed as near-meaning-
less. To make strong inferences and hard claims, we cannot do
without many repetitions: large amounts of examples of the same
type of thing, over and over again. The recent announcement
of the discovery of the Higgs Boson, inferred from experimental
data with the famously stringent “five sigma” level of statistical
significance that particle physics requires, took 300 trillion repe-
titions of the proton collision experiment that the Large Hadron
Collider was built for. For a particle physicist, attempting any-
thing with just one sample must feel like digging a railway tunnel
with a toothpick.

There is still, however, considerable difference between one
sample and no samples at all. Consider this classic scenario, used
the world over to instruct students in the basics of statistics: a
soldier for a nation engaged in a bitter ground war is debriefed
after being rescued from behind enemy lines. He relates to his
superiors that he witnessed a new type of tank in a training ex-
ercise. The tank is clearly a secret weapon, and far in advance
of anything their side can produce. The officers become anxious
and wish to know how many of these tanks the enemy posess.
The soldier only saw one, but he can relate that its serial number
was 17.

2 INTRODUCTION

Assuming that the enemy number their tanks in sequence, and
that the soldier was as likely to spot this tank as any other, what
does this one observation tell us about the number of tanks pro-
duced? Clearly, there are at least 17, but how many beyond that?
What would be a good guess? One approach would be to take
the number of tanks n for which this outcome (a soldier spotting
tank number 17) is most likely. For n less than 17, seeing tank 17
is impossible, and for higher n the probability of observing any
particular tank is 1/n. Thus, by this criterion we will guess that
the enemy made just 17 tanks, and our soldier just happened to
stumble on the one with the highest serial number. This seems
like an optimistic conclusion, so perhaps we need to adjust our
criterion.

Instead of choosing the n for which our particular outcome
is the most likely, let us try to find a different procedure; one
that (a) ensures that the average of many repeats of this exper-
iment (one soldier, one tank) converges to the true value, and
(b) produces the smallest expected difference between our guess
and the true value. Such a procedure is known as an unbiased
minimum-variance estimator. For this problem, one exists, and it
tells us to expect that the enemy has 33 tanks. It also tells us that
if we want to make a statement with 95% confidence, we should
say that the enemy has between 17 and 340 tanks. Still a great
deal of uncertainty, but much better than we would have had if
we had dismissed the single sample as useless. During the second
world war, the Allies used exactly this procedure to estimate the
number of Mark V tanks the Germans were producing (although
they had more than one observation to work with) [33].

This type of trick is not much help to Onno Quist. The Phais-
tos disc contains no serial number, or at least not one that we can
read. And if it did, estimating the production capability of the
ancient Minoans is of no more help in translating the contents of
the disc, than the tank’s serial number would be in guessing the
names of its occupants. But Onno does have one advantage that
the beleaguered nation didn’t have: the Phaistos disc contains in-
ternal structure. We can count its symbols, look at their frequen-
cies, their proximities and co-occurrences. The single number 17
could not be cracked open in this way to to find more informa-
tion.

3

And in this respect Onno is not so lonely in his quest. While
few scientists are asked to use just one sample to estimate the
mean life expectancy, or the median income of a population,
when the objects under study become more complex and richly
structured, the number of examples available usually drops. Take
the current webgraph, for example: the dense web of links be-
tween webpages on the Internet. This is one of the most promis-
ing “objects” of study in the world today. Unlocking just part of
its structure allowed Google to completely dominate the search
engine market at the end of the last century. And like Onno, re-
searchers studying of the webgraph have only one example to
work with. Climate researchers may sympathise. Until our tele-
scopes improve their resolution, we have only one liquid-water
planet whose atmosphere we can investigate. Speaking of tele-
scopes, until 2003, astronomers had no proof that other stars
even had planets circling them, and the only sample of a solar
system they had access to was our own.

So what can be done? How far can Quist hope to get with
the Phaistos disc? The world of statistics, machine learning and
data mining offers a vast landscape of approaches. A landscape,
that is, unfortunately, rather fragmented. The statisticians are di-
vided in two camps, Frequentists and Bayesians, with incompati-
ble ideas of what constitutes a probability. Furthermore, there is
a zoo of different types of data: independent draws, or draws ar-
ranged in time, both in single dimensions or multiple, each draw
may be from a fixed, finite number of outcomes, or from a con-
tinuous spectrum. And then there are objects like networks and
trees, rich in structure, but requiring a whole new approach.

How can we capture this entire landscape in a single perspec-
tive? We will construct a metaphor to illustrate our view. Imagine
a large room, filled with a vast number of machines. The ma-
chines are started, and each begins to write a sequence of ones
and zeroes to a tape. Some machines will run indefinitely, and
some, after a while, will stop. Each machine operates like clock-
work: once started it will follow the exact same sequence of steps
every time. The only thing that affects this deterministic opera-
tion is the ability the machines have to ask for randomness. The
machine, at any point, as determined by its deterministic oper-

4 INTRODUCTION

ation, can ask for a random bit. If it does, the operation of the
machine pauses, we flip a coin, and provide the machine with the
result: 1 if the coin lands head and 0 if it lands tails. Based on this
input the machine can change its operation. Since we don’t feel
like standing around waiting for the machines to ask us for coin
flips, we simply flip a large number of coins in advance, write the
results on a large tape, and let the machine read from this tape
as it pleases.

Now imagine that we are given a finite sequence of ones and
zeroes, a bit string, and we are told only that it came from one of
the machines. The question put to us, is which machine produced
the data? This is a metaphor for the business of inference. The
world is a collection of processes. Each partly deterministic, and
partly random. Our data is some set of observations from one of
these processes: perhaps a human brain formulating an order for
movie tickets, perhaps a human investigator sampling the heights
of randomly selected individuals. You may object that none of
these datasets are bit strings, but they can all be encoded as such.
In fact any statistician using a computer to analyze her data must
admit that whatever shape or properties she assumes her data
has, the way it is stored on the hard drive of her laptop is as a
string of ones and zeroes.

Now, we haven’t yet described what these machines are. How
should we build them? By what rules do they operate? Can
we define a family of machines so that any process that might
produce our data is equivalent to some machine in our family?
It turns out that there is such a family, called Turing machines.
These are purely mathematical constructs, and although occa-
sionally a computer scientist with time to spare will build one
out of Meccano or Lego, they are mostly studied with pen and
paper.

There are very good reasons to believe that any process we
can hope to understand fully, is equivalent to a Turing machine.
Note that we don’t say that any process the universe can exhibit
is necessarily Turing equivalent. We only claim that the Turing
machines capture effectiveness. A process is effective when it can
be described objectively and unambiguously, so that it can be
simulated by anyone with access to the description. Turing ma-

5

chines may not capture the limits of the universe, but it is likely
that they capture the limits of what we can understand (at least
at the level of scientific rigor). If our data did not come from
a Turing-equivalent process, we have no hope of understanding
those parts that a Turing machine cannot capture. In Chapter 2,
we will look at Turing machines in more detail, and discuss the
reasons to believe that they capture the notion of effectiveness.

This will be our framework. We have encountered some data,
and we will assume that a Turing machine (or some process
equivalent to it) has produced it.1If we assume that we have un-
limited resources at our disposal, what can we hope to do? We
could test every machine: try every sequence of coin flips as in-
put. Many machines are capable of producing our data, but for
which machine are we most likely to observe our data? This is a
simple matter: for every sequence of random bits for which the
machine produces our data, the probability is 1

2 ×
1
2 ×

1
2 × . . .

and so on, for as many bits as we fed the machine. That is, if we
fed the machine n bits, the probability of the machine producing
our data in this way is 2−n. If there are multiple sequences for
which the machine produces our data, we can sum their proba-
bilities. We will introduce some notation to represent these ideas
concisely: let T represent one of the machines, and let y be a
sequence of bits that we should feed the machine so that it pro-
duces our data x. We then write:

T(y) = x .

Note that there is always a machine that doesn’t require any
random bits, and simply produces our data whenever we start it.
For any dataset, such a machine exists, encoding the data in the
details of its cogs and wheels. For this machine, the probability
of seeing our data is 1. This isn’t a very satisfying explanation
of our data. We would like to find a machine that will produce
a dataset like ours when we run it a second time, but not one
that produces the exact same dataset. We want a second Phaistos

1It is possible to assume that data comes from a source that cannot be sim-
ulated by a Turing machine, and still perform effective inference under this as-
sumption. We will not discuss such settings here.

6 INTRODUCTION

disc, not the same disc again. Somehow, we need to take into
account the cost of encoding the data internally. The solution
is found in universal machines. Somewhere in our vast room of
infinite machines, there are machines that work as follows: they
first choose, using the coin flips, another machine at random, in
such a way that any machine can be chosen, and then proceed to
simulate that machine.

Instead of asking which of the many machines produced our
data, we can simply assume that the universal machine produced
it, and ask which is the shortest sequence of random coin flips
that causes the universal machine to produce our data. This se-
quence encodes first a machine, and then a sequence of random
bits to feed to that machine to get our data. Let i be the first part
of the sequence, and let y be the second. If we call the universal
machine U, we can describe its operation as:

U(iy) = Ti(y) .

Here, iy is the concatenation of i and y, and Ti is the machine
described by i. Thus, running U and feeding it the sequence iy is
equivalent to running Ti and feeding it the sequence y.

This is the basis of the theory of Kolmogorov Complexity. This
theory is built on two important consequences of this metaphor.
First, it gives us an explicit connection between how likely a
dataset is, and how compactly we can describe it. Second, we
can choose any universal Turing machine we like, and the Kol-
mogorov complexity will only change by a constant amount.

The first consequence, the connection between a description of
our data, and its probability, can be shown as follows. If we take
the sequence of random bits that causes our universal machine
to produce our data, we can send it to somebody else, somebody
who knows which universal machine we’ve chosen, and they can
reconstruct the data from just this sequence. Thus, there is a
strong connection between how compactly we can describe our
data, and how likely we are to see it. This means that the most
likely way for the universal machine to have produced our data is
equivalent to the shortest description for the data using the uni-
versal Turing machine. And that value is called the Kolmogorov
complexity.

7

The Kolmogorov complexity answers the question “how much
information does an object contain?” If I can describe an object
in 500 bits, then the information contained in the object cannot
be more than 500 bits. So, if I find the shortest possible descrip-
tion, the length of that description is the amount of information
contained in the object.

To make this intuition precise, we must detail what we mean
by a description. The objects themselves, we will assume, are
encoded as bit strings, so that all descriptions are of bitstrings.
As for the description language, we will not prescribe what it
should be, save that it is (a) effective, and (b) Turing complete.
Effectiveness simply means that there is a formal, unambiguous
method to get from a description to the object being described. In
modern terms: there is an algorithm for unpacking the descrip-
tion. Turing completeness means that the description language is
as powerful as the family of Turing machines. The simplest way
to satisfy these requirements is to choose a universal Turing ma-
chine, and to take the sequence of bits we feed it as a description
of the data it outputs. We will refer to the bits fed to the uni-
versal Turing machine as the program p. As before, we write the
operation of U on p to produce x as:

U(p) = x .

The Kolmogorov complexity of x is the length of the shortest pro-
gram p that we can feed U so that it produces x:

K(x) = min
{
|p| : U(p) = x

}
where |p| denotes the length of p.

You may object at this point that this definition of information
content is very dependent on a lot of arbitrary choices. What
if we had chosen a different universal machine? Or a different
description language altogether? Wouldn’t we get an entirely
different Kolmogorov complexity for the same x? How then, can
we talk as if this information content is somehow a property of
the data? This brings us to the second important property of
Kolmogorov complexity: if we change our description language,

8 INTRODUCTION

we may indeed get a different complexity, but there’s a strong
bound on how much the complexity will differ. For two different
description languages, the Kolmogorov complexity will differ by
at most a constant amount, independent of x.

The argument is simple. First we note that any description
language that fits the criteria outlined above, can be implemented
by a universal Turing machine. So the question can be reduced to
how much will the Kolmogorov complexity change, if we switch to
a different universal Turing machine? The next step follows from
the fact that a universal Turing machine can simulate any other
Turing machine. Remember that p is the concatenation of two
bit strings: one, i, describing a Turing machine, and another y,
describing the bits to be fed to that Turing machine. If we denote
the Turing machine described by i as Ti, then we can rewrite the
operation of U as

U(iy) = Ti(y) .

Now, if somebody else, with a different universal Turing machine
V, claims that the Kolmogorov complexity is 500 bits, how much
can we disagree with him on the basis of our universal Turing
machine U? Since U can simulate any other Turing machine, it
can also simulate V. Let v be a description of the machine V so
that

U(vy) = V(y) .

Then, one program we have to produce x, is v, concatenated with
the 500-bit program that our opponent claims to have. So our
Kolmogorov complexity must be less than 500 plus the length of
v. Using the same argument in reverse, there is some string u
such that their Kolmogorov complexity will always be less than
ours plus |u|.

We say that Kolmogorov complexity is independent of the
choice of universal Turing machine in an asymptotic sense: for
small datasets there may be meaningful differences, but so long
as the datasets grow large enough, the difference becomes in-
significant. This kind of asymptotic thinking takes some getting
used to, and while it is tempting to simply think of Kolmogorov
complexity as an objective function per se, it is important to make

9

such simplifications with the eyes wide open. For instance, given
a dataset, we can always choose two universal Turing machines
such that their “constant of disagreement” is much larger than the
size of the data. However, given these two universal Turing ma-
chines, there is always a number n such that for other datasets,
larger than n, the constant is dwarfed by the size of the data. To
summarize, information content is subjective, but that subjectiv-
ity is bounded by a constant, while the amount of information
contained in a dataset is not.

The second thing that makes Kolmogorov complexity chal-
lenging to work with is that it is incomputable. There exists no
computer program (or Turing machine) that can compute it for
us. The crux of the problem is that if we decide to simply try all
programs for the universal Turing machine one by one, and see
which produces x, there will be some programs that take a long
time to finish, and some programs that never halt. We may try
programs in parallel, of course, using multiple copies of U, and
at any point we will have a current shortest program p, and sev-
eral shorter programs that are still running. The problem is, we
can never be sure if those programs still running might, at some
point, stop and produce x, of if they will never halt, and we have
in fact found the shortest program already.

This is the point where the practically-minded statistician may
depart. An incomputable function that is only objectively defined
in an asymptotic sense? What possible use is such a thing to those
of us with practical, everyday jobs to do, like decoding the Phais-
tos disc? The point we wish to make here is not so much that
we must all change our ways, to the glorious path of Kolmogorov
complexity, but that Kolmogorov complexity offers a framework,
a perspective on the things that we are all doing already. We all
sit behind computers, so we all analyze bit strings. We all try to fit
probabilistic models to these bitstrings, models that are usually
equivalent to Turing machines.

And it is a perspective that shows us our limits as well as our
options: the constant machine-dependence discussed above does
not go away if we forget about Turing machines, even if we’re just
trying to fit a normal distribution to this year’s exam results. We
may limit our model class to normal distributions, but that just

10 INTRODUCTION

means we are restricting our view to a particular subset of Turing
machines: those computing discrete approximations of normal
distributions. And outside this subset of Turing machines, the in-
computable ideal description still exists. Chapter 3 investigates
this idea further, asking if we can find some sort of guarantee
that the model class we have limited ourselves to contains a Tur-
ing machine that describes our data as well as the Kolmogorov
complexity.

The incomputability of the ideal description length is one of
the limits that Kolmogorov complexity imposes. Are there more?
What else can’t we do? If we get enough data, can we recover,
with some level of certainty, the exact Turing machine that pro-
duced our data? Or will there always be multiple Turing ma-
chines that are equally likely to be responsible? We study this
question in Chapter 4, and find that there are strong reasons to
believe that arriving at a single choice of Turing machine is im-
possible. We can use the theory of Kolmogorov complexity to
reject many Turing machines as the source of our data, but we
will always be left with a set of equivalent models.

And what of the statisticians whose datasets do not fit well-
established forms like independent draws from a single source.
What can Onno Quist and researchers studying the web graph or
the climate system take from Kolmogorov complexity? How can
this incomputable quantity help them to cut up their data into
manageable chunks and expose its inner structure? What if we
find some structure, and it helps us to compress the data, can we
take this as proof that the patterns we have found are somehow
intrinsic to the data? In Chapter 5, we take on one such practical
problem with the principles of Kolmogorov complexity: the anal-
ysis of complex graphs. We find that the notion of compression as
learning helps us to find a fast method to search for such chunks
in out data.

Kolmogorov complexity shows us our options, but also our
limitations. As we will see, the answers to the questions posed
above are negative as often as they are positive. Some of the
things we do every day, with constrained model classes, become
impossible if the model class grows. Others survive the gener-
alization, and remain valid techniques, even if we extend our

11

model class to include all Turing machines. Ultimately, this leaves
us with a highly robust subset of statistical techniques. Tech-
niques that are still applicable, no matter how powerful our mo-
del class becomes.

The arrival of global networking, exascale data storage, and
petascale processing has propelled us into a new era of data anal-
ysis. An era where there is no shortage of data, but also no short-
age of new types of data. The familiar forms of data: iid samples
and timeseries, have been joined by new forms that, while large
and rich in structure, show no easy way to get from the full bit
string to smaller, independent components. We study two exam-
ples of such structures: in Chapter 5 we analyze complex graphs,
and in Chapter 6, we study data with self-similar structure; for
which a small part has the same properties as the whole.

Meanwhile, the model classes that are available for such novel
types of data are equally diverse, and difficult to generalize. Of-
ten, the only common denominator is that they are distributions
that provide a high probability for the data: or equivalently, de-
scription methods that provide a short description. This is the
general perspective that Kolmogorov complexity provides: a sin-
gle sample, represented by a bit string, and a universe of models,
represented by Turing machines.

2 · SETTING THE STAGE

This chapter provides an informal introduction to the concepts that
recur in later chapters. It is not based on original research and can
be safely skipped. All chapters are self-contained, and can be under-
stood with a basic understanding of the preliminaries. However, this
chapter may help to provide context to the results presented here-
after, and allow the reader to better see the thematic throughline
discussed in the introduction and conclusion.

This dissertation describes four separate research projects; each
with their own context and their own aims. There are how-
ever, recurring themes and subjects. The three most important
ones are effectiveness, Kolmogorov complexity and the no-hyper-
compression inequality. We will take some time to discuss each
informally.

2.1 Effectiveness

Towards the end of the 19th century, mathematicians began to
think about the limits of mathematics. As mathematics grew
more formal, and more precise, people started to consider what
the limits of such formal systems were. More and more, peo-
ple began to ask about the existence of effective procedures to
solve various mathematical problems. “Effective procedure” was
a term with no mathematical definition, but one that was eas-
ily understood intuitively: a procedure that was unambiguous,
requiring no insight or intuition. A set of instructions that any-
body could follow to arrive at a certain outcome. What today, we
would call an algorithm.

Here’s an example: imagine you are faced with a stack of mag-
azines, which you would like to sort by date. Move trough the
stack from top to bottom. For every magazine and the one be-
low it, check if they are in the correct order. If not, swap them
around, otherwise move on. When you get to the bottom of the
stack, go back to the top and repeat the procedure. If you make
it to the bottom without performing a single swap, the stack is

14 SETTING THE STAGE

sorted. This is an effective procedure for sorting a stack of maga-
zines. Note that we are not saying anything about the efficiency
of the procedure (there are much better ways to sort a stack of
magazines), just that it can be described in unambiguous instruc-
tions, that any competent individual can follow.

The quest for the existence of effective procedures is exem-
plified in the Entscheidungsproblem, posed by David Hilbert in
1928. He asked for an effective procedure that takes as its in-
put a statement in first-order logic and decides whether or not
the statement is true (that is, whether there exists a proof for the
statement). The Entscheidungsproblem asks for an effective pro-
cedure for the business of being a mathematician. A way to arrive
automatically at a proof, or disproof, of any properly formalized
statement.

In order to get anywhere near a solution of the Entscheid-
ingsproblem, what was needed was a formalization of the idea of
an effective procedure. Some language or formalism, such that
any possible effective procedure could be captured by it. The
solution came when a young mathematician named Alan Turing
went for a walk.

As he lay down in Grantchester meadows, near Cambridge
where he was a fellow of King’s College, he considered the prob-
lem of computable numbers. One of the first things we learn in
mathematics is the distinction between different types of num-
bers. To start with, we have the natural numbers: 0, 1, 2, . . . ,
the numbers we can use to count objects. Then there are the inte-
gers, which include the natural numbers, but also their negatives.
There are the rational numbers: those that can be represented as
a/b, where a and b are integers. There are the algebraic num-
bers: those numbers for which a polynomial function with ra-
tional numbers for coefficients is zero. Some numbers that we
know, like π = 3.141592 . . . don’t belong to any of these classes.
There is an infinite sequence of decimals that represents it, but no
division of two integers, and no rational-valued polynomial can
be used to describe it precisely. Yet, in a sense, a mathematician
could “compute” π: given large stack of paper, and a sufficient
amount of time, a competent mathematician could follow a sim-
ple set of instructions and write down an arbitrary number of

2.1 Effectiveness 15

these decimals. Is this true for all numbers, Turing wondered,
or are there numbers that can only be represented as an infinite
sequence of decimals, where even a competent mathematician,
with a set of clear instructions and unlimited time is not suffi-
cient to pin the number down.

This comes down to effective procedures. A computable num-
ber is one for which we have an effective procedure to write down
the first n decimals, for any n. To answer this question, Tur-
ing needed a formal definition of what constitutes an effective
description. A language for a set of instructions that is simple
enough that our competent mathematician can follow them, but
that is complex enough to capture anything we might consider
“computation”.

Turing proceeded by taking the only example we have of a
system that can undeniably execute any effective procedure: a
mathematician at a desk with an unlimited supply of paper, time
and coffee. He then broke down this system into its essential
components. Let’s start with the paper. The mathematician can
write whatever he likes, wherever he likes on the paper, but that’s
not strictly necessary. We can segment the paper into cells, and
allow him to write only one symbol into each cell. This does not
fundamentally restrict what he can do. It makes things more dif-
ficult, but the possibilities should remain the same. While we’re
at it, we can take these cells and string them into a single paper
tape, along which the mathematician can only move left or right.
We also require that he can only read or write to the cell right
in front of him. Again, things become more laborious, but the
set of things the mathematician can do, the numbers he can, in
theory, compute, should remain the same. As for the symbols, we
can restrict the mathematician to zeroes and ones. He can simply
use small sequences of these to encode whatever other symbols
he used originally, so again, while we’re making his life more
difficult, we are not restricting the things he can, in principle,
achieve.

But of course the desk, the paper, the symbols, these are not
the complicated parts. The true complexity lies in the brain of
the mathematician. While we have failed, and will fail for a long
time to come, to find a formal description of human intelligence,

16 SETTING THE STAGE

we can take a shortcut here to make our life easier. Let’s assume
that in the course of carrying out his instructions, our mathemati-
cian’s brain can only take on a finite number of states. We don’t
know how to define the state of a brain, but we’ll simply say that
once a brain is in the same state, given the same context, it will
always do the same thing. Recall that the mathematician is car-
rying out strict instructions, requiring no special insight or intel-
ligence. Most likely, we usually won’t need nearly as many states
as the human brain is capable of taking on. We can even remove
the mathematician’s memory, save for the part that stores his in-
structions, since anything the mathematician needs to remember,
he can write down on the tape.

By now, we have reduced the whole system to a very simple
and understandable machine, known these days as a Turing ma-
chine. The machine moves its read/write head along an unlimited
tape, reading and writing ones and zeroes on it. A program for
such a machine consists simply of (a) how many states the ma-
chines should reserve, (b) a set of rules, with each rule telling the
machine that if it is in a certain state, and reads a certain sym-
bol, the machine should either move left, move right or write a
particular thing on the tape. After that, the rule gives us a new
state to move to. If we have really succeeded in reducing the
mathematician step by step to a formal system, without remov-
ing any potential capability, then for any effective procedure we
can find a set of rules to program such a machine with, to make
it execute the procedure. The convention is to identify the ma-
chine with the program: that is, if we talk about a certain Turing
machine, we are actually referring to a Turing machine with a
specific program.

This gave Turing an immediate answer to the question of com-
putable numbers: since we can sort all Turing machines in a long
list (shortest first, and then alphabetically if the lengths are the
same), we can number them 0, 1, 2, 3 and so on. This tells us
that there are as many Turing machines, and hence as many com-
putable numbers, as there are natural numbers. And since it had
been known for decades that the set of natural numbers is in a
specific sense much smaller than the set of all numbers that can
be represented by infinite sequences of decimals, the same holds

2.1 Effectiveness 17

for computable numbers.
But Turing had not just solved the question of computable

numbers. He had stumbled on a definition of computability that
was to form the foundation of the field of computer science. All
this, incidentally, he did well before the invention of the digital
computer.

Incidentally, while our construction of the Turing machine sug-
gests that we have reduced a system capable of all effective com-
putation to a formal machine, without reducing the limit of its
capabilities, this does not constitute a proof that every effective
procedure corresponds to a Turing machine. Such a proof can-
not exist, as effectiveness is an intuitive notion, but in the eight
decades since the Turing machine was invented, every formal
machine that has ever been imagined has been shown to be ei-
ther equivalent to a Turing machine (ie. it leads to the same
set of computable numbers), or weaker (it leads to a subset of
the Turing-computable numbers). The hypothesis that this will
remain the case, and no effective procedure exists that cannot
be implemented by a Turing machine, is known as the Church-
Turing thesis: anything that can be effectively computed, can be
computed by a Turing machine.

From Turing’s construction, we can also see why there must
be universal Turing machines: machines that can simulate any
other machine, as mentioned in the introduction. The execution
of a Turing machine clearly follows a pre-determined, unambigu-
ous process. A process that a mathematician at a desk can easily
work through, given some coffee and a stack of paper. In short,
there is an effective procedure for the simulation of Turing ma-
chines. And thus, if the Church-Turing thesis holds, there is a
Turing machine that simulates other Turing machines. Turing did
not trust to the Church-Turing thesis, however, but provided a rig-
orous, constructive proof that a universal Turing machine exists
[88].

We can now see why, in the introduction, we chose the meta-
phor of a room full of machines to represent the business of sta-
tistical inference. Under the Church-Turing thesis, the set of all
Turing machines captures all possible effective procedures. We
have implicitly equated a model for a dataset with an effective

18 SETTING THE STAGE

procedure for generating it. To complete this picture we need to
address two issues.

First, it should be noted that Turing machines as currently de-
fined are entirely deterministic. They either produce the data or
not. In the introduction we fed the random bits upon request,
to introduce randomness. The simplest way to formalize this is
to give the machine an input tape (separate from its work tape),
from which it can only read, and whose head can only move in
one direction. We fill this tape with random bits (taking care to
add a few more every time the machine is in danger of reading an
empty square). This provides the machine with a source of ran-
domness and the ability to generate samples from a computable
distribution.

Incidentally, these kinds of Turing machines, where the input
tape can only be read and then only in one direction, are called
prefix-free Turing machines. They are called this because no input
that causes the machine to halt can be a prefix of another input
that causes the machine to halt: if a is a prefix of b, and the
machine halts if we put a on the input tape, then putting b on
the input tape would have the same effect: once the machine has
read the part of b that is equal to a, it will halt.

Second, our perspective uses generative probability models:
machines that produce random samples on request. In many ar-
eas of statistics it is more common to start with models which
gives numeric probabilities, either to outcomes, or sets of out-
comes. It can be shown that the two formalisms are equivalent in
the following sense: given a Turing machine that samples from
a distribution, we can provide another Turing machine that ap-
proximates the probability of each outcome from below up to
arbitrary accuracy. Likewise, given such a Turing machine ap-
proximating the probability, we can provide one that samples
outcomes with the correct probabilities.1

We will conclude this section with the most famous result
about Turing machines: the resolution of the Entscheidungspro-
blem. Turing, in the same paper in which he introduced his
machines, reduced the Entscheidungsproblem to what has be-
come known as the halting problem: does there exist an effective

1A proof is provided in Section A.0.1.

2.2 Kolmogorov complexity 19

procedure to decide whether any given Turing machine, with a
given input, either halts or computes indefinitely? Turing showed
that if no such procedure exists, then an effective procedure for
the Entscheidungsproblem also cannot exist. He then showed
that, indeed, the halting problem could not be solved by effective
means.

To see why the halting problem is undecidable, imagine, as we
did before, the Turing machines enumerated in a long list so that
each Turing machine gets its own number. To the right of each
Turing machine we write what the output is, if we provide it with
the input 1, encoded as a binary string, next to that the output
for input 2, and so on. If the Turing machine doesn’t halt for
a particular input, we write ∞. This gives us a large table that
extends infinitely far down, and infinitely far to the right. A table
that depicts all effectively computable functions from one natural
number to another.

Now consider the following procedure with input i:
Take the computation of the Turing machine numbered i, on
input i. If it halts and produces a number, output that num-
ber plus 1. If it does not halt, output 0.

Is this procedure effective? If it is, then there must be a Turing
machine which computes it, and this Turing machine must corre-
spond to some row in our infinite table. Yet, by its construction,
we can see that every Turing machine in our table differs from
this one in at least one place: at the diagonal of our table. Thus,
this procedure cannot be effective. The problem lies in the condi-
tion “if it halts”. This cannot be effectively computed. The halting
problem is undecidable, and with it the Entscheidungsproblem.

2.2 Kolmogorov complexity

We have met the Kolmogorov complexity in the introduction: the
shortest program for x on a universal Turing machine as a formal
definition of the “amount of information” that x contains. Above,
we fleshed out the definition of Turing machines a little bit. We
saw that the Turing machines capture all effective methods, so
that we can now say the Kolmogorov complexity of x is just the
length of the shortest effective method for producing x.

We also mentioned that Kolmogorov complexity is incompu-

20 SETTING THE STAGE

table. Or, as we can now put it: there is no effective method
of computing the Kolmogorov complexity. Even though it is per-
fectly well-defined—one program for U, after all, must be the
first that produces x—it cannot be computed. How can this be?

Incomputability Gregory Chaitin, one of Kolmogorov complex-
ity’s three independent inventors, arrived at Kolmogorov com-
plexity in the way that is most directly related to its incomputabil-
ity. He was considering the Berry paradox, and trying to find a
resolution. To explain the Berry paradox in modern terms, imag-
ine two mathematicians playing a game on Twitter. They are
each trying to name the largest possible number within the 140
characters that Twitter allows. The first might come out with a
simple:

999
999
99

To which the other might reply with
9ˆ
9ˆ
9ˆ9ˆ9ˆ9ˆ9ˆ9ˆ9ˆ9ˆ9ˆ9ˆ9ˆ9ˆ9ˆ9ˆ9ˆ9ˆ9ˆ9ˆ9ˆ9

a so-called power-tower: we raise nine to the power of nine, we
raise nine to the power of that and so one. Using a more obscure
description, the other, inspired by a popular webcomic,2 comes
back with:
A(G,G), with A the Ackermann function and G Graham’s
number.

A famous large number, entered into a fast-growing function.
The second mathematician thinks for a while, and deals the fi-
nal blow:

The smallest number not expressible in a tweet.
The price paid for winning the game is the birth of a paradox. The
winning mathematician has just expressed a number in a tweet,
that by its very definition is not expressible in a tweet. This is a
modern version of the original Berry paradox, which reads The
smallest number not expressible in less than 20 words.

2http://xkcd.com/207

http://xkcd.com/207

2.2 Kolmogorov complexity 21

Chaitin co-invented Kolmogorov complexity to solve this para-
dox. Translated to the world of Turing machines the description
becomes a program

“Compute K(x) for all x increasing in length. When you
find an x for which K(x) > ?, stop and output x”

where some natural number n should take the place of the ques-
tion mark. The size of the program grows with our choice of n,
but only very slowly, so that we can be sure that for large enough
n the length of the program itself is much less than n. So by the
construction of the program, we have K(x) > n. But the program
itself prints x. It is a description of x much smaller than n. By
the Church-Turing thesis, we can translate this program to the
universal Turing machine. If we accept that that program will
also be much shorter than n, so long as n is big enough, we have
arrived at our paradox. By definition, x has large Kolmogorov
complexity, but we have also described it concisely.

The resolution is that our program cannot be implemented
on a universal Turing machine. There is no effective method to
execute the instruction “compute K(x)”, and thereby, no effective
method to compute our program. You might argue that we can
simply make a huge number of copies of the machine Tu and
run every program shorter than the length of x in parallel, one
machine per program. Surely that is an effective way to compute
K(x)? The problem with this approach is that some machines
may run for a very long time and halt, while others will never
halt. At any point, we will have no idea which machines, of those
still running, are going to halt at some point on the future, and
which machines will never halt. This problem is incomputable,
and by extension, so is the value of K(x).

Randomness Finally, we will consider the solution that Kol-
mogorov complexity offers to another classical problem, a clash
of intuition and theory that has bothered mathematicians for a
long time. Imagine you are passing the the time with a friend by
betting pennies on the outcome of a coin flip. Your friend flips the
coin, and you take turns betting on the outcome. Heads always
nets you a penny, tails costs you one. Writing ‘1’ for heads and ‘0’

22 SETTING THE STAGE

for tails, the outcome of the first forty bets looks like this:

01 .

Since you took the first bet, you have now lost twenty pennies,
and you can take it no longer. You accuse your friend of cheating.
Your friend counters that you have no basis for your claim: the
probability of this sequence is 1

2 ×
1
2 ×

1
2 × . . . =

(
1
2

)40
, the same

as any other sequence of 40 outcomes. If it had been

0100101001001001001110111011010010111010 ,

would you have complained? Because both sequences have the
same probability. And while you cannot counter his argument,
you do decide to cut your losses and stop the game: you’re still
convinced that you’ve been cheated.

Is your friend right? Is there no basis to claim that the first
bit string requires more of an explanation than a fair coin flip?
The problem has existed since at least 1812, when the ideas of
classical probability theory were first gathered together by Pierre-
Simon Laplace. His thoughts on the issue were remarkably close
to the solution we have today:

“The drawing of a white ball from from an urn which a-
mong a million balls, contains only one of this color, the
others being black, would appear to us likewise extraordi-
nary, because we form only two classes of events relative
to the two colors. But the drawing of the number 475813
from an urn that contains a million numbers seems to us an
ordinary event; because comparing individually the num-
bers with one another without dividing them into classes,
we have no reason to believe that one of them will appear
sooner than the other.” [59]

So who decides what these classes are? Why does “regular strings”
count as a class, but we’re not allowed to put the irregular string
in a class by itself? For that matter, what does “regularity” mean?
If someone tells us that the second string looks regular to him,
how can we convince him he’s wrong?

If we assume that Turing machines, with access to random-

2.2 Kolmogorov complexity 23

ness, were responsible for the two strings above, we can begin
to see a hint of a solution: assume that both strings came from
a universal Turing machine. Remember that the universal Tur-
ing machine operates by first sampling another Turing machine,
and then the input for that Turing machine. For the first string,
there are a few options. The first is to sample a Turing machine
that does nothing more than spit out its own input. This descrip-
tion requires 40 bits, plus the description of the Turing machine.
Another is to sample the Turing machine that repeats the the se-
quence 01 a number of times, determined by its input. This ma-
chine requires again a fixed number of bits to describe, and its
input takes however many bits it takes to represent the number
20.

Clearly the second option provides a smaller description. To
solve the problem in Laplace’s terms: let a class of strings be
a subset of strings that can be represented efficiently by some
Turing machine. That is, the input to the Turing machine required
to return the class is less than the full length of the string, plus
the cost of describing the Turing machine itself. In other words,
any string in such a class has a Kolmogorov complexity less than
the length of the string: the string is compressible.

How many compressible strings are there? This is a simple
computation: take the set of strings of length 40, how many of
them are compressible to 10 bits? There are at most 210 programs
of 10 bits, so the ratio of programs compressible to 10 bits is no
more than 210/240 = 2−30, about one in a billion. In general
terms, the rule is that the proportion of strings compressible to
more than n bits than their length is 2−n. This function decays
very rapidly: for 10 bits it’s around one in one-thousand, and for
20 bits it’s one in one-million, and so on. This tells us that the
proportion of strings that are compressible by more than a small
margin, is very small.

This is why we were so surprised to see a string with such reg-
ularity: since flipping a random coins selects a string uniformly
from the set of all strings of a given length, and the highly regular
strings represent an exponentially small proportion, the probabil-
ity of seeing such regularity is impossibly small.

24 SETTING THE STAGE

2.3 The no-hypercompression inequality

If effectiveness and Kolmogorov complexity are the leading cou-
ple in our production, then the no-hypercompression inequality is
its main character actor. Unassuming, unsurprising and modest,
a workhorse. But no less crucial to the plot than its more glam-
orous colleagues. It’s so modest a result that its inventor is no
recorded, but the name was coined in [47, p103].

Let T be any prefix-free Turing machine and sample a string x
from it. T may have many different programs for x. Call these y1,
y2, y3, . . . For each y that causes T to produce x, the probability
of providing T with that y is 2−|y|. Summing the probabilities
over all possible programs for x, the total probability that T pro-
duces x, is

pT (x) = 2−|y1| + 2−|y2| + 2−|y3| + . . .

Let LT (x) = −dlogpT (x)e. In effect, LT combines the proba-
bility mass of all the programs y1, y2, y3, . . . into a single code-
length.

The no-hypercompression inequality tells us that if we sample
from T , then with overwhelming probability K(x) is not much less
than LT (x). Specifically, the probability that we sample a string
such that LT (x) − K(x) is more than k bits is 2−k bits. Again, we
see an exponential decay, meaning that for only 30 bits differ-
ence, the probability is already below one in a billion.

As an example, consider the Turing machine, that simply co-
pies the first 400 random bits it samples to its output. This ma-
chine is equivalent to simply flipping a random coin to generate a
bit string. The probability that you will flip a string compressible
by 30 bits is less than one in a billion. This is exactly what we
already saw in the last section.

Since the Kolmogorov complexity is more efficient, up to a
constant, than any effective description method, it follows that
if we sample x from T the probability that any other Turing ma-
chine can be used to describe xmore efficiently than LT can, by a
more than k bits, decays exponentially in k. Indeed, it turns out

2See Section A.0.1.

2.3 The no-hypercompression inequality 25

we need not worry about the “up to a constant” this time. It can
be shown that the no-hypercompression inequality holds for the
negative logarithm of any probability distribution: for any proba-
bility distribution p and any description method D, if we sample
x from p, the probability that D describes x more efficiently than
LT by k bits is less than 2−k. 3

The no-hypercompression inequality has many uses. First, it
tells us that if we assume that our data came from T , and we
approximate the Kolmogorov complexity with LT , which is com-
putable for most reasonable T , we can be almost certain that we
have, up to a few bits, an accurate approximation of the Kol-
mogorov complexity, even though the Kolmogorov complexity it-
self is not computable. We expand on this idea in Chapter 3,
showing that even if we broaden our assumption to state that one
in a set of Turing machines produced the data, we can still apply
this principle, and arrive at a solid, computable approximation of
the Kolmogorov complexity.

In Chapter 5 we use another logical consequence of the no-
hypercompression inequality: if we assume that T generated x,
and we find a compression method that compresses x better than
T by k bits, we must either accept that we have witnessed a very
rare event (of probability less than 2−k), or reject our assumption
that T generated the data. This is known as a hypothesis test, a
common tool in statistical analysis.

As an example, consider a researcher, like Onno with the Phais-
tos disc, faced with a single bit string and no means to make any
assumptions about its origin. And say that the researcher has
a hunch that maybe it would be a good idea to consider suc-
cessive chunks of five bits as the “words” of the data. Without
making assumptions about the source of the data, she can’t con-
firm that this is the case, but she can reject other hypotheses.
For instance, she can make the assumption that each bit is in-
dependently drawn, from some distribution giving 0 and 1 each
a probability: a kind of coin flip with an unbalanced coin. This
assumption corresponds to a Turing machine, and thus a code-
length for the data. If, by cutting the data into chunks of five

3This more generic form is shown in Chapter 5. Its proof is very simple, but
requires some basic information theory that would overburden this chapter.

26 SETTING THE STAGE

bits, she can compress better than this codelength, that gives her
evidence to reject the assumption that the data consists of inde-
pendently drawn bits.

source: http://xkcd.com/505

http://xkcd.com/505

3 · A SAFE APPROXIMATION OF KOLMOGOROV

COMPLEXITY

The material in this chapter was adapted from the paper A safe
approximation of Kolmogorov complexity. P. Bloem, F. Mota, S.
de Rooij, L. Antunes and P. Adriaans Algorithmic Learning Theory
2014, 336-350

As we discussed in the last two chapters, any compression we
can find for a given dataset is an upperbound for the Kolmogorov
complexity. Let’s say Onno takes the Phaistos disc, suitably dig-
itized, and runs it through a popular compressor, like ZIP. This
fits into our perspective in the following way: somewhere in our
enumeration of Turing machines, there is one, let’s call it Tzip, that
implements the unzipping algorithm: it reads a zipped file from
its input tape, and spits out the unzipped version. This means
that the pair Tzip and y form a program on the universal Turing
machine for the Phaistos disc. There may be other programs,
so the Kolmogorov complexity might be smaller than the cost of
describing Tzip and x, but not longer: any effective description
forms an upper bound.
Still, there is no certainty that our upper bound is at all near the
mark. Consider the following sequence of digits:

11963873342433752817639715294452086026098204232
10781885383640346955237554824114081209821556429
85908942807653462454238736210994686936381442681
3302041177480603581

This will look entirely random to all but a handful of people. Put
it through zip, or any other modern day compressor, and you
will not be able to represent it any more any efficiently than just
writing it down. Nevertheless, it’s highly compressible: these
are the first 160 odd places in the the decimal sequence of π.
π is a well-studied number, and very efficient algorithms exist
for enumerating its digits. One such program, combined with
instructions to disregard the even places and to stop after a 160

30 A SAFE APPROXIMATION OF KOLMOGOROV COMPLEXITY

characters suffices as an explanation. In short, we were fooled:
we thought the string contained no structure, when in fact there
is a very short description.

In this chapter, we show that at the cost of one assumption,
we can show that such situations are unlikely to occur. The as-
sumption takes the form of a subset of all Turing machines, a
model class C. We assume that the source of our data was equiv-
alent to a Turing machine in C. For many choices of C, we have a
computable approximation of the Kolmogorov complexity, that is
very rarely very wrong. Specifically, if we sample data x from any
Turing machine in C, and compress it with κC, our computable C-
based approximation, the probability that κC(x) − K(x) is larger
than k bits, decays exponentially.

We can see k as a margin of error. If the probability that
κC(x) < K(C) is bounded by some c, and we need to set our
margin of error at k bits to ensure a probability of less than 1

2c

that our approximation is within k bits of the real value, then,
with 2k bits we get a probability below 1

4c. With 10k bits we
get less than 1

1024c and with 20k bits we get 1
1048576c, a proba-

bility of less than one-millionth of c. This result follows almost
directly from the no-hypercompression inequality dicussed in the
last chapter, but to a achieve a truly computable safe approxima-
tion, some care must be taken, and we we see that some obvious
choices turn out not to be safe approximations.

Of course, our margin of error is usually not up for discus-
sion, but it is usually proportional to the amount of data. Getting
the complexity wrong by a handful of bits when the original data
was only fifty bits long may be a problem, but when we have
several gigabytes of data to analyze, a handful will hardly be no-
ticeable. So, instead of imagining the statistician increasing her
margin of error until the probability is low enough, we can imag-
ine her increasing the amount of data. A twenty-fold increase in
the amount of data is no mean feat, but in the era of “big data” it
is certainly achievable. And if the payoff is an almost certainly ac-
curate approximation of the magical, incomputable Kolmogorov
complexity, it may be a price worth paying. We call such func-
tions safe approximations.

3.1 The two worlds of Kolmogorov complexity 31

3.1 The two worlds of Kolmogorov complexity

The Kolmogorov complexity of an object is its shortest descrip-
tion, considering all computable descriptions. It has been de-
scribed as “the accepted absolute measure of information content
of an individual object” [36], and its investigation has spawned a
slew of derived functions and analytical tools. Most of these tend
to separate neatly into one of two categories: the platonic and
the practical.

On the platonic side, we find such tools as the normalized in-
formation distance [61], algorithmic statistics [36] and sophisti-
cation [92, 8]. These subjects all deal with incomputable “ideal”
functions: they optimize over all computable functions, but they
cannot be computed themselves.

To construct practical applications (i.e. runnable computer
programs), the most common approach is to take one of these
platonic, incomputable functions, derived from Kolmogorov com-
plexity (K), and to approximate it by swapping K out for a com-
putable compressor like GZIP [38]. This approach has proved
effective in the case of normalized information distance (NID)
[61] and its approximation, the normalized compression distance
(NCD) [27]. Unfortunately, the switch to a general-purpose com-
pressor leaves an analytical gap. We know that the compressor
serves as an upper bound to K—up to a constant—but we do not
know the difference between the two, and how this error affects
the error of derived functions like the NCD. This can cause se-
rious contradictions. For instance, the normalized information
distance has been shown to be non-approximable [85], yet the
NCD has proved its merit empirically [27]. Why this should be
the case, and when this approach may fail has, to our knowledge,
not yet been investigated.

We aim to provide the first tools to bridge this gap. We will
define a computable function which can be said to approximate
Kolmogorov complexity, with some practical limit to the error. To
this end, we introduce two concepts:

• We generalize resource-bounded Kolmogorov complexity
(Kt) to model-bounded Kolmogorov complexity, which mini-
mizes an object’s description length over any given enumer-

32 A SAFE APPROXIMATION OF KOLMOGOROV COMPLEXITY

able subset of Turing machines (a model class). We explic-
itly assume that the source of the data is contained in the
model class.

• We introduce a probabilistic notion of approximation. A
function approximates another safely, under a given distri-
bution, if the probability of them differing by more than k
bits, decays at least exponentially in k. 1

While the resource-bounded Kolmogorov complexity is compu-
table in a technical sense, it is never computed practically. The
generalization to model bounded Kolmogorov complexity creates
a connection to the Minimum Description Length (MDL) principle
[79, 80, 47], which does produce algorithms and methods that
are used in a practical manner. Kolmogorov complexity has long
been seen as a kind of platonic ideal which MDL approximates.
Our results show that MDL is not just an upper bound to K, it
also approximates it in a probabilistic sense.

Interestingly, the model-bounded Kolmogorov complexity it-
self—the smallest description using a single element from the
model class—is not a safe approximation. We can, however, con-
struct a computable, safe approximation by taking into account
all descriptions the model class provides for the data.

The main result of this chapter is a computable function κ
which, under a model assumption, safely approximates K (Theo-
rem 3.3). We also investigate whether a κ-based approximation
of NID is safe, for different properties of the model class from
which the data originated (Theorems 3.5, 3.6 and 3.7).

3.2 Turing machines and algorithmic probability

We will first review briefly, in technical terms, the matter that was
covered informally in the previous chapters: Turing machines,
computable probability distributions and Kolmogorov complex-
ity.

Turing machines Let B = {0, 1}∗. We assume that any dataset
is encoded as a finite binary string. Specifically, the natural num-

1This consideration is subject to all the normal drawbacks of asymptotic ap-
proaches. For this reason, we have foregone the use of big-O notation as much as
possible, in order to make the constants and their meaning explicit.

3.2 Turing machines and algorithmic probability 33

bers can be associated to binary strings, for instance by the bi-
jection: (0, ε), (1, 0), (2, 1), (3, 00), (4, 01), etc, where ε is the
empty string. To simplify notation, we will sometimes conflate
natural numbers and binary strings, implicitly using this order-
ing.

We fix a canonical prefix-free coding, denoted by x, such that
|x| 6 |x| + 2 log |x|. See [62, Example 1.11.13] for an example.
Among other things, this gives us a canonical pairing function to
encode two strings x and y into one: xy.

For Turing machines, we use the basic model from [62, Exam-
ple 3.1.1]. The following properties are important: the machine
has a read-only, right-moving input tape, an auxiliary tape which
is read-only and two-way, two read-write two-way worktapes and
a read-write two-way output tape.2 All tapes are one-way infinite.
If a tape head moves off the tape or reads beyond the length of
the input, the machine enters an infinite loop.

For the function computed by Turing machine i on input p
with auxiliary input y, we write Ti(p | y) and Ti(p) = Ti(p |

ε). The most important consequence of this construction is that
the programs for which a machine with a given auxiliary input y
halts, form a prefix-free set [62, Example 3.1.1]. This allows us to
interpret the machine as a probability distribution (as described
in the next subsection).

We fix an effective ordering {Ti}. We call the set of all Turing
machines C. There exists a universal Turing machine, which we
will call U, that has the property that U(ıp | y) = Ti(p | y) [62,
Theorem 3.1.1].

Probability We want to formalize the idea of a probability dis-
tribution that is computable: it can be simulated or computed by
a computational process. For this purpose, we will interpret a
given Turing machine Tq as a probability distribution pq: each
time the machine reads from the input tape, we provide it with
a random bit. The Turing machine will either halt, read a finite
number of bits without halting, or read an unbounded number
of bits. pq(x) is the probability that this process halts and pro-
duces x: pq(x) =

∑
p:Tq(p)=x 2−|p|. We say that Tq samples pq.

2Multiple work tapes are only required for proofs involving resource bounds.

34 A SAFE APPROXIMATION OF KOLMOGOROV COMPLEXITY

Note that if p is a semimeasure, 1 −
∑
x p(x) corresponds to the

probability that this sampling process will not halt.
We model the probability of x conditional on y by a Turing ma-

chine with y on its auxiliary tape: pq(x | y) =
∑
p:Tq(p|y)=x 2−|p|.

The lower semicomputable semimeasures [62, Chapter 4] are
an alternative formalization. We show that it is equivalent to
ours:

Lemma 3.1. † The set of probability distributions sampled by
Turing machines in C is equivalent to the set of lower semicom-
putable semimeasures.

The distribution corresponding to the universal Turing machine
U is called m: m(x) =

∑
p:U(p)=x 2−|p|. This is known as a

universal distribution. K and m dominate each other, i.e. ∃c∀x :

|K(x) − logm(x)| < c [62, Theorem 4.3.3].

3.3 Model-bounded Kolmogorov complexity

In this section we present a generalization of the notion of re-
source-bounded Kolmogorov complexity. We first review the un-
bounded version:

Definition 3.1. Let k(x | y) = arg minp:U(p|y)=x |p|. The prefix-
free, conditional Kolmogorov complexity is

K(x | y) = |k(x | y)|

with K(x) = K(x | ε).

Due to the halting problem, K is not computable. By limiting
the set of Turing machines under consideration, we can create a
computable approximation.

Definition 3.2. An effective model class C ⊆ C is a computably
enumerable set of Turing machines. Its members are called mod-
els. A universal model for C is a Turing machine UC such that
UC(ıp | y) = Ti(p | y) where i is an index over the elements of
C.

†Proof in the appendix.

3.3 Model-bounded Kolmogorov complexity 35

All model classes referred to in this chapter are effective, and we
will omit the adjective for the remainder. In the next chapter we
will use a more general definition of model class.

Definition 3.3. For a given C and UC we have

KC(x) = min
{
|p| : UC(p) = x

}
,

called the model-bounded Kolmogorov complexity.

KC, unlike K, depends heavily on the choice of enumeration of
C. A notation like KUC or Ki,C would express this dependence
better, but for the sake of clarity we will use KC.

We define a model-bounded variant of m as

mC(x) =
∑

p:UC(p)=x

2−|p|

which dominates all distributions in C:

Lemma 3.2. For any Tq ∈ C, mC(x) > cqpq(x) for some cq
independent of x.

Proof. mC(x) =
∑

i,p:UC(ıp)=x

2−|ıp|

>
∑

p:UC(qp)=x

2−|q|2−|p| = 2−|q|pq(x) .

Unlike K and − logm, KC and − logmC do not dominate one
another. We can only show that − logmC bounds KC from below
(
∑
UC(p)=x 2−|p| > 2−|kC(x)|). In fact, as shown in Theorem 3.1,

− logmC and KC can differ by arbitrary amounts.

Example 3.1 (resource-bounded Kolmogorov complexity
[62, Chapter 7]). Let t(n) be some time-constructible function.3

Let Tti be the modification of Ti ∈ C such that at any point in the
computation, it halts immediately if more than k cells have been
written to on the output tape and the number of steps that have
passed is less than t(k). In this case, whatever is on the output
tape is taken as the output of the computation. If this situation
does not occur, Ti runs as normal. Let Ut(ıp) = Tti (p). We call

36 A SAFE APPROXIMATION OF KOLMOGOROV COMPLEXITY

this model class Ct. We abbreviate KC
t

as Kt.
Since there is no known means of simulating Ut within t(n),

we do not know whether Ut ∈ Ct. It can be run in ct(n) log t(n)
[62, 50], so we do know that Ut ∈ Cct log t.

Other model classes include Deterministic Finite Automata, Mar-
kov Chains, or the Normal distribution (suitably discretized).
These have all been thoroughly investigated in coding contexts
in the field of Minimum Description Length [47].

3.4 Safe approximation

When a code-length function like K turns out to be incomputable,
we may try to find a lower and upper bound, or to find a function
which dominates it. Unfortunately, neither of these will help us.
Such functions invariably turn out to be incomputable themselves
[62, Section 2.3].

To bridge the gap between incomputable and computable func-
tions, we require a softer notion of approximation; one which
states that errors of any size may occur, but that the larger errors
are so unlikely, that they can be safely ignored:

Definition 3.4. Let f and fa be two functions. We take fa to be
an approximation of f. We call the approximation b-safe (from
above) for a distribution (or adversary) p if for all k and some
c > 0:

p(fa(x) − f(x) > k) 6 cb
−k .

Since we focus on code-length functions, usually omit “from
above”. A safe function is b-safe for some b > 1. An approx-
imation is safe for a model class C if it is safe for all pq with
Tq ∈ C.

While the definition requires this property to hold for all k, it
actually suffices to show that it holds for k above a constant, as
we can freely scale c:

Lemma 3.3. If ∃c∀k:k>k0 : p(fa(x) − f(x) > k) 6 cb−k, then fa
is b-safe for f against p.

3I.e. t : N→ N and t can be computed inO(t(n)) [15].

3.4 Safe approximation 37

Proof. First, we name the k below k0 for which the ratio between
the bound and the probability is the greatest:

km = arg max
k∈[0,k0]

[
p(fa(x) − f(x) > k)/cb

−k
]

.

We also define bm = cb−km and pm = p(fa(x) − f(x) > km). At
km, we have p(fa(x) − f(x) > km) = pm = pm

bm
cb−km . In other

words, the bound c ′b−k with c ′ = pm

bm
c bounds p at km, the

point where it diverges the most from the old bound. Therefore,
it must bound it at all other k > 0 as well.

This asymptotic definition requires some justification. After all,
if the exponential decay only holds after some constant, how
can we be sure that the safety of an approximation will actu-
ally come into play for our data? A similar problem occurs when
analysing the time-complexity of algorithms: we may prove that
a sorting algorithm has a log-linear time complexity in an asymp-
totic sense, but can we be sure that this will hold for some given
dataset, or does the log-linear regime only start for much larger
data?

The reason we resort to an asymptotic definition of safety is
the same as it is with sorting algorithms: we want our claim to
be machine-independent. We want any claims of safety to be in-
dependent of the indexing chosen for the model class C. Chang-
ing this index will cause a constant change to the approximation
we will define later. Similarly, changing the indexing of C (as
captured by our choice of universal Turing machine) will change
the value of the Kolmogorov complexity by a constant. Since we
want to make statements about safe approximation independent
of such choices, we must resort to an asymptotic definition.

We choose exponential decay as the measure of safe approxi-
mation because this is the strongest decay for which we can prove
that a computable function exists. We do not expect that com-
putable functions can be found for a stronger level of decay, but
this is an open question.

Safe approximation, domination and lowerbounding form a
hierarchy:

38 A SAFE APPROXIMATION OF KOLMOGOROV COMPLEXITY

Lemma 3.4. Let fa and f be code-length functions. If fa is a
lower bound on f, it also dominates f. If fa dominates f, it is also
a safe approximation.

Proof. Domination means that for all x: fa(x) − f(x) < c, if fa
is a lower bound, c = 0. If fa dominates f we have ∀p,k > c :

p(fa(x) − f(x) > k) = 0.

Finally, we show that safe approximation is transitive, so we can
chain together proofs of safe approximation; if we have several
functions with each safe for the next, we know that the first is
also safe for the last.

Lemma 3.5. The property of safety is transitive over the space of
functions from B to B for a fixed adversary.

Proof. Let f, g and h be functions such that

p(f(x) − g(x) > k) 6 c1b1
−k and

p(g(x) − h(x) > k) 6 c2b2
−k .

We need to show that p(f(x) − h(x) > k) decays exponentially
with k. We start with

p (f(x) − g(x) > k∨ g(x) − h(x) > k) 6 c1b1
−k + c2b2

−k .

{x : f(x) − h(x) > 2k} ⊆ {x : f(x) − g(x) > k∨ g(x) − h(x) > k},
so that the probability of the first set is less than that of the sec-
ond set: p (f(x) − h(x) > 2k) 6 c1b1

−k + c2b2
−k.

Which gives us

p (f(x) − h(x) > 2k) 6 cb−k

p (f(x) − h(x) > k ′) 6 cb ′−k
′

with b = min(b1,b2), c = max(c1, c2) and b ′ =
√
b.

3.5 A safe, computable approximation of K 39

KC(x)

κC(x) =
 -log mC(x)

κC(x) =
 -log mC(x) -log m(x)

K(x)

computable approximable

dominates

unsafe

bounds

2-safe

dominates

bounds

bounds

incomputable

dominates

dominates

Figure 3.1: An overview of how various codelength functions re-
late to each other in terms of approximation safety. These rela-
tions hold under the assumption that the data is generated by a
distribution in C and that C is sufficient and complete.

3.5 A safe, computable approximation of K

Assuming that our data is produced from a model in C, can we
construct a computable function which is safe for K? An obvious
first choice is KC. For it to be computable, we would normally
ensure that all programs for all models in C halt. Since the halt-
ing programs form a prefix-free set, this is impossible. There is
however a property for prefix-free functions that is analogous.
We call this sufficiency:

Definition 3.5. A sufficient model T is a model for which every
infinite binary string contains a halting program as a prefix. A
sufficient model class contains only sufficient models.

We can therefore enumerate all inputs for UC from short to long
in series to find kC(x), so long as C is sufficient. For each in-
put, UC either halts or attempts to read beyond the length of the
input.

In certain cases, we also require that C can represent all x ∈ B
(i.e. mC(x) is never 0). We call this property completeness:

Definition 3.6. A model class C is called complete if for any x,
there is at least one p such that UC(p) = x.

We can now say, for instance, that KC is computable for sufficient
C. Unfortunately, KC turns out to be unsafe:

40 A SAFE APPROXIMATION OF KOLMOGOROV COMPLEXITY

Theorem 3.1. There exist model classes C so that KC(x) is an
unsafe approximation for K(x) against some pq with Tq ∈ C.

Proof. We first show that KC is unsafe for − logmC.
Let C contain a single Turing machine Tq which outputs x for

any input of the form xp with |p| = x and computes indefinitely
for all other inputs.
Tq samples from pq(x) = 2−|x|, but it distributes each x’s prob-

ability mass uniformly over many programs much longer than |x|.
This gives us KC(x) = |x|+ |p| = |x|+ x and − logmC(x) = |x|,

so that KC(x) + logmC(x) = x. We get

mC(KC(x) + logmC(x) > k) = mC(x > k) =∑
x:x>k

2−|x| >
∑
x:x>k

2−2 logx > k−2

so that KC is unsafe for − logmC.
It remains to show that this implies that KC is unsafe for K.

In Theorem 3.2, we prove that − logmC is safe for K. Assuming
that KC is safe for K (which dominates − logmC) implies KC is
safe for − logmC, which gives us a contradiction.

Note that the use of a model class with a single model is for
convenience only. The main requirement for KC to be unsafe is
that the prefix tree of UC’s programs distributes the probability
mass for x over many programs of similar length. The greater the
difference between KC and − logmC, the greater the likelihood
that KC is unsafe. Note also that we can blow this difference up
arbitrarily: for any computable function f(x), we can define a
model class C so that KC(x) + logmC(x) > f(x).

Our next candidate for a safe approximation of K is − logmC.
This time, we fare better. Here, we require for the first time the
no-hypercompression inequality [47, p103], discussed already in
the previous chapter. In our current notation it reads:

Lemma 3.6. Let pq be a probability distribution. The corre-
sponding code-length function, − logpq, is a 2-safe approxima-
tion for any other code-length function against pq. For any pr
and k > 0: pq(− logpq(x) + logpr(x) > k) 6 2−k.

3.5 A safe, computable approximation of K 41

Theorem 3.2. − logmC(x) is a 2-safe approximation of K(x)
against any adversary from C.

Proof. Let pq be some adversary in C. We have

pq(− logmC(x) − K(x) > k)

6 cmC(− logmC(x) − K(x) > k) by Lemma 3.2,

6 c2−k by Lemma 3.6.

While we have shown mC to be safe for K, it is defined as an
infinite sum, even if C is sufficient, so computing it naively would
require infinite time. We can, however, define an approximation,
which, for sufficient C, is computable and dominates mC.

Definition 3.7 (Safe approximation algorithm). Let the model
class D be the union of C and some arbitrary sufficient and com-
plete distribution from C.

Let mCc (x) be the function computed by the following algo-
rithm: Dovetail the computation of all programs on UD(x) in
cycles, so that in cycle n, the first n programs are simulated for
one further step. After each such step we consider the probability
mass s of all programs that have stopped (where each program
p contributes 2−|p|), and the probability mass sx of all programs
that have stopped and produced x. We halt the dovetailing and
output sx if sx > 0 and the following stop condition is met:

1 − s

sx
6 2c − 1 .

Note that if C is sufficient, so is D, so that s goes to 1 and sx
never decreases. Since all programs halt, the stop condition must
be reached. The addition of a complete model is required to
ensure that sx does not remain 0 indefinitely.

Lemma 3.7. If C is sufficient, mCc (x) dominates mC with a con-
stant multiplicative factor 2−c (i.e. their code-lengths differ by at
most c bits).

Proof. We will first show thatmCc dominatesmD. Note that when

42 A SAFE APPROXIMATION OF KOLMOGOROV COMPLEXITY

the computation of mCc halts, we have mCc (x) = sx and mD(x) 6
sx + (1 − s). This gives us:

mD(x)

mCc (x)
6 1 +

1 − s

sx
6 2c .

Since C ⊆ D, mD dominates mC (see Lemma A.2 in the ap-
pendix) and thus, mCc dominates mC.

An alternative phrasing of this result is that mC(x) is a com-
putable real function [63, Definition 4.1.2]. The parameter c in
mCc allows us to tune the algorithm to trade off running time for
a smaller constant of domination. We will usually omit it when it
is not relevant to the context.

Putting all this together, we have achieved our aim:

Theorem 3.3. For a sufficient model class C, − logmC is a safe,
computable approximation of K(x) against any adversary from C.

Proof. We have shown that, under these conditions, − logmC

safely approximates − logm which dominates K, and also that
− logmC dominates − logmC. Since domination implies safe ap-
proximation (Lemma 3.4), and safe approximation is transitive
(Lemma 3.5), we have proved the theorem.

Figure 3.1 summarizes this chain of reasoning and other relations
between the various code-length functions mentioned.

The negative logarithm ofmC will be our go-to approximation
of K, so we will abbreviate it with κ:

Definition 3.8. κC(x) = − logmC(x) and κC(x) = − logmC(x).

Finally, if we violate our model assumption we may lose the prop-
erty of safety. For adversaries outside C, we cannot be sure that
κC is safe:

Theorem 3.4. There exist adversaries pq with Tq /∈ C for which
neither κC nor κC is a safe approximation of K.

Proof. Consider the following algorithm for sampling from a com-
putable distribution (which we will call pq):

3.6 Approximating normalized information distance 43

• Sample n ∈ N from some distribution s(n) which decays
polynomially.

• Loop over all x of length n return the first x such that
κC(x) > n.

Note that at least one such x must exist by a counting argument:
if all x of length n have − logmC(x) < n we have a code that
assigns 2n different strings to 2n − 1 different codes.

For each x sampled from q, we know that κ(x) > |x| and
K(x) 6 − logpq(x) + cq. Thus:

pq(κ
C(x) − K(x) > k) > pq(|x|+ logpq(x) − cq > k)

= pq(|x|+ log s(|x|) − cq > k) =
∑

n:n+logs(n)−cq>k
s(n) .

Let n0 be the smallest n for which 2n > n+ log s(n)− cq. For all
k > 2n0 we have∑

n:n+logs(n)−cq>k
s(n) >

∑
n:2n>k

s(n) > s
(

1
2k
)

.

For Ct (as in Example 3.1), we can sample the pq constructed
in the proof in O(2n · t(n)). Thus, we know that κt is safe for K
against adversaries from Ct, and we know that it is unsafe against
C2t

.

3.6 Approximating normalized information distance

Definition 3.9 ([61, 27]). The normalized information distance
between two strings x and y is

NID(x,y) =
max [K(x | y),K(y | x)]

max [K(x),K(y)]
.

The information distance (ID) is the numerator of this function.
The NID is neither lower nor upper semicomputable [85]. Here,
we investigate whether we can safely approximate either func-
tion using κ. We define IDC and NIDC as the ID and NID func-
tions with K replaced by κC. We first show that, even if the ad-
versary only combines functions and distributions in C, IDC may
be an unsafe approximation.

44 A SAFE APPROXIMATION OF KOLMOGOROV COMPLEXITY

Definition 3.10. A function f is a (b-safe) model-bounded one-
way function4for C if it is injective, and for some b > 1, some
c > 0, all q ∈ C and all k:

pq
(
κC(x) − κC (x | f(x)) > k

)
6 cb−k .

Theorem 3.5. † Under the following assumptions:

• C contains a model T0, with p0(x) = 2−|x|s(|x|), with s a
distribution on N which decays polynomially or slower,

• there exists a model-bounded one-way function f for C,
• C is normal, i.e. for some c and all x: κC(x) < |x|+ c

IDC is an unsafe approximation for ID against an adversary Tq
which samples x from p0 and returns xf(x).

If x and y are sampled from C independently, we can prove
safety:

Theorem 3.6. † Let Tq be a Turing machine which samples x
from pa, y from pb and returns xy. If Ta, Tb ∈ C, IDC(x,y) is a
safe approximation for ID(x,y) against any such Tq.

The proof relies on two facts:

• κC(x | y) is safe for K(x | y) if x and y are generated this
way.

• Maximization is a safety preserving operation: if we have
two functions f and g with safe approximations fa and ga,
max(fa(x),ga(x)) safely approximates max(f(x),g(x)).

For normalized information distance, which is dimensionless, the
error k in bits as we have used it so far does not mean much.
Instead, we use f/fa as a measure of approximation error, and
we introduce an additional parameter ε:

Theorem 3.7. † We can approximate NID with NIDC with the
following bound:

pq

(
NID(x,y)

NIDC(x,y)
/∈
(

1 −
k

c
, 1 +

k

c

))
6 c ′b−k + 2ε

4This is similar to the Kolmogorov one-way function [14, Definition 11].

3.7 Discussion 45

with

pq(IDC(x,y) > c) 6 ε and pq
(
max

[
κC(x), κC(y)

]
> c
)
6 ε

for some b > 1 and c ′ > 0, assuming that pq samples x and y
independently from models in C.

3.7 Discussion

This chapter investigated the question of what can be accom-
plished with minimal assumptions. With no assumptions but
effectiveness, we can do no better than bound the Kolmogorov
complexity from above. With a general model assumption C,
however, we can show that the function κC is a safe approxima-
tion, which is computable so long as C is sufficient. We have also
shown that KC(x) is not safe. Finally, we have given some insight
into the conditions on C and the adversary, which can affect the
safety of NCD as an approximation to NID.

Since, as shown in Example 3.1, resource-bounded Kolmogo-
rov complexity is a variant of model-bounded Kolmogorov com-
plexity, our results apply to Kt as well: Kt is not necessarily a safe
approximation of K, even if the data can be sampled in t and κt is
safe if the data can be sampled in t. Whether Kt is safe ultimately
depends on whether a single shortest program dominates among
the sum of all programs, as it does in the unbounded case.

For complex model classes, κC may still be impractical to com-
pute. In such cases, we may be able to continue the chain of safe
approximation proofs. For instance, we may show that a model
which is only locally optimal, found by an iterative method like
gradient descent, is still a safe approximation of the global opti-
mum. By the transitive property, this would show that it is also a
safe approximation of K. Such proofs would truly close the circuit
between the ideal world of Kolmogorov complexity and modern
statistical practice.

4 · THE PROBLEM OF SOPHISTICATION

The material in this chapter was adapted from the paper Two prob-
lems for sophistication P. Bloem, S. de rooij, P. Adriaans Algorith-
mic Learning Theory 2015, 379-394

Sophistication was proposed to complement Kolmogorov Com-
plexity in areas where the latter does not chime with our intu-
ition. The previous chapters have hopefully convinced you that
Kolmogorov complexity formalizes very neatly the notion of how
much information an object contains. Yet the objects that are the
richest in information according to Kolmogorov complexity don’t
seem to us very interesting. They are the static you see on an old
fashioned TV, the noise you hear on your car’s radio when you
try to find a station or simply the sequence of ones and zeroes
generated by a coin-flipping game.

These are not signals that are rich or valuable to us. What
makes data interesting is a mixture of predictability and unex-
pectedness: melodies, language, plot twists. Images of rolling
hills or cityscapes. Most of these would probably have a Kol-
mogorov complexity somewhere in between a small constant and
the full length of the raw data. However, not all data with mod-
erate Kolmogorov complexity is interesting: flipping a coin that
is slightly bent, so that it lands heads more often than tails will
create an utterly boring sequence, with medium compressibility.

Is there some other way to separate the wheat from the chaff?
Can we find some function, in the spirit of Kolmogorov complex-
ity, that tells us which data is interesting? Sophistication is one
approach: it tells us to consider not the descriptive complexity
of the whole data, but of the model alone. This make intuitive
sense; all the boring data mentioned above may have high com-
plexity, but the models are all simple. Contrast this with the opti-
mal compression of a movie: such a model should contain infor-
mation about language, human anatomy, plot structure, human
emotion, architecture, nature. All these concepts are patterns
present in the data, and the shortest program on the universal

48 THE PROBLEM OF SOPHISTICATION

Turing machine exploits all of them. It must have a highly com-
plex model.

Where the theory breaks down, as we discuss in this chapter,
is the idea that this shortest program separates neatly into struc-
ture and noise: the structure placed into the Turing machine Ti
and the noise placed in its input y. As we saw earlier, there are
programs with the universal Turing machine for a model, that
place all the information in the input, and the length of this rep-
resentation is equal to the Kolmogorov complexity.

4.1 Sophistication

Kolmogorov complexity gives us a sound definition of the amount
of information contained in a binary string. It does not, however,
capture what most people would consider complexity. For exam-
ple, a sequence of a million coin flips will almost certainly have
maximal Kolmogorov complexity, even though there is nothing
complex about flipping a coin repeatedly. Many scholars have de-
fined additional measures in the spirit of Kolmogorov complexity,
aimed at quantifying not all information in a binary string, but
only the meaningful. While this concept has been given many
names, we use sophistication as an umbrella term. In this chap-
ter, we investigate two serious problems with sophistication. We
conclude with two arguments suggesting the problems are fun-
damental, explaining our belief that sophistication cannot be de-
fined in a satisfactory manner.

The Kolmogorov complexity C(x)1 of a binary string x is, in-
formally, the length of the shortest computer program to print
x. This length depends on the choice of programming language,
but, by the invariance theorem [63, Section 2.1], only by a con-
stant, independent of x. For sufficiently complex objects, the
choice of programming language becomes irrelevant and Kol-
mogorov complexity becomes an objective measure. A definition
of sophistication S(x) in the spirit of C(x) should have similar
guarantees:

1In previous chapters, we defined Kolmogorov complexity using Turing ma-
chines that can only read their input left to right, prefix-free Turing machines.
Such Turing machines lead to the prefix-free Kolmogorov complexity K(x). In
this chapter, we also use the classical Kolmogorov complexity C(x), defined on
Turing machines that can read back an forth on their input tape at will. Since the

4.1 Sophistication 49

1. S(x) should count the bits required for an effective descrip-
tion of the structural properties of a binary string.

2. An analogue of invariance should hold: there must be strict
limits on how much sophistication can be affected by a
change in programming language.

3. There should be no constant c such that S(x) 6 c for every
input x. If sophistication is bounded, then knowing its value
under one programming language provides no constraints
on its value under another language (except that it is also
bounded).

4. Similarly, there should be no constant c such that
|C(x) − S(x)| 6 c for all x,

because then sophistication would be equivalent to Kol-
mogorov complexity.

There have been many proposals for such a measure, all based on
a two-part code: we encode a model in the first part of the code,
which is interpreted as a representation of x’s structural proper-
ties. The model does not fully specify x, but when combined with
the second part of the code, which specifies the noise, the original
string becomes fully determined.2

For any string x, there may be many different two-part codes.
The total length can never be less than the Kolmogorov com-
plexity, but it can come close. Figure 4.1 illustrates the princi-
ple. The key to sophistication is to take the representations that
come close to the Kolmogorov complexity, the candidates, and
define the sophistication as the size of the smallest model in this
set. However, for most definitions, we can prove that they fail
one of the conditions above. For others, we cannot prove they
conflict with our requirements, but we show these methods only
assign substantial sophistication to strings that require an enor-
mous amount of processing to construct.

A valid definition of S(x) must contend with two important
issues. First, the details of the way the model is encoded are

sophistication knows many definitions, some using C(x), some using K(x), we
must consider both variants.

2Some variants deviate from the two-part coding format, see Section 4.4.3.

50 THE PROBLEM OF SOPHISTICATION

model complexity

re
si

du
al

 c
om

pl
ex

ity

C(x)

C(x)

sophistication model complexity

re
si

du
al

 c
om

pl
ex

ity

C(x)

C(x)

sophistication

Figure 4.1: (left) Two-part representations of x by the two com-
ponents of their code. The Kolmogorov complexity C(x), appear-
ing as a black diagonal, provides a lower bound on the total code-
length. We consider only representations that are close to this
optimum with the threshold represented by a dashed line. The
size of the smallest model below the threshold is the sophistica-
tion. (right) The same image, after a constant perturbation in the
model complexity caused by a change in numbering.

important. There are two technically distinct approaches; in one
of these one has to deal with the so-called “nickname problem”
that strangely remains unresolved in several publications. These
definitions yield a sophistication that is highly dependent on the
chosen programming language, unless special care is taken, as
discussed in Section 4.3.

The second issue is that of striking the right balance between
under- and overfitting, which we consider in Section 4.4. Overfit-
ting is a common problem in statistics, that refers to the tendency
to choose a complex model that provides a very good fit to the
observed data, but does not generalise well to unseen data. In the
case of sophistication, overfitting occurs if the model that deter-
mines the sophistication contains much or even all of the noise.
In statistics, overfitting is often addressed by penalising complex
models. In sophistication, however, such penalties tend to break
the balance between structural information and noise, and lead
to the opposite problem: underfitting.

Underfitting occurs when the selected model is simple, but

4.2 Notation 51

fails to capture all structure in the data. This is also a problem
for sophistication because the models under consideration are so
powerful. In particular, in any programming language, there are
programs that implement an interpreter for another language.
Such universal models are simple, since they can be described
with a relatively small number of bits, yet are able to represent
any data using a code within a constant from the Kolmogorov
complexity. Such a two-part representation essentially encodes
all information as noise. If complex models are penalized, then
the problem becomes to make sure that universal models are not
always preferred for complex data. The usual workaround is to
restrict the set of allowed models, for instance to total functions.
While this excludes universal models, it is questionable whether
it adequately solves the problem of underfitting in general.

Finally, in Section 4.5 we argue that while two-part coding can
yield useful insights into the structure of the data and identifies
some models as poor representations, it is probably not possible
to objectively separate structure from noise and identify a single
model as “best”: many models of different complexities may be
reasonable representations. Rather than doggedly trying to “fix”
this property of algorithmic statistics, we propose embracing the
idea that the data allows for multiple, equivalent interpretations
of which information is structured, and which is random, and
that there is no such thing as sophistication.

4.2 Notation

The following notation allows us to generalize across all defini-
tions and variants of sophistication, save the occasional exception
which we will highlight individually.

In the previous chapter we dealt with Turing machines and
conflated them with the functions they compute. In this chap-
ter, we will focus more strongly on the functions themselves. A
partial computable function is one that is computable by Turing
machine. We consider non-prefix-free Turing machines as well
(the prefix-free Turing machines are a subset of these).

We deal with partial computable functions f : B × B → B,
which we also call models. f is called prefix if

domz(f) = {y : f(y, z) 6=∞}

52 THE PROBLEM OF SOPHISTICATION

is a prefix free set for all z, i.e. no string in domz(f) is a prefix of
another. A function f is total if ∀zdomz(f) = B. In most cases, we
do not use the second argument, and let f(x) = f(x, ε).

A numbering is an enumeration of the partial computable func-
tions, denoted by ψ1,ψ2, . . . or simply ψ. We fix one canonical
numbering φ, chosen to be effective: i.e. given i and y, we can
effectively compute φi(y). We call a numbering ψ acceptable if
there exist total, computable functions a,b : N → N with ∀ : i,
φi = ψb(i) and ψi = φa(i). One example of an effective, accept-
able numbering is to take descriptions of Turing machines (by
some standard scheme), first by length, and then lexicographi-
cally. The rank in this ordering corresponds to the number in the
numbering.

We generalize the definition of a model class. A generic model
class is a set of indices in a numbering ψ. We define four classes:

• The indices of the partial computable functions C = N.
• The total functions T = {i : ψi is total}. Note that T is not

computably enumerable.
• K is an enumerable set such that {ψi : i ∈ K} is the set of

all partial computable prefix functions.
• The finite sets: F is an enumerable set such that {ψi : i ∈ F}

is the set of uniform codes for all finite sets.3

The model class T highlights the contrast with the effective model
classes of the previous chapter: T is not effectively enumerable.
All model classes in this chapter are generic, and we will omit the
adjective in the remainder.

For technical reasons, we deviate slightly from the traditional
notation of Kolmogorov complexity used in the previous chapter:
let M be a model class and ψ an acceptable numbering, then let
CM,ψ(x | z) = min {|̄ıy| : ψi(y, z) = x, i ∈M}, with CM,ψ(x) =

CM,ψ(x | ε). We omit the numbering when the distinction is not
relevant.
CC(x) corresponds to the plain Kolmogorov complexity C(x).

CK(x) corresponds to the prefix-free version K(x) from the pre-
vious chapter. This is a different construction of K(x), but it can

3A uniform code for set F is a surjective prefix function f : {0, 1}dlog |F|e→ F.

4.3 Inefficient indices 53

be shown that the two are equal up to a constant.
Note that the notation C{i},ψ(x) can be used to represent the

smallest two-part description of x using model ψi.
In these constructions we have used the principle of a num-

bering for the purpose normally served by the universal Turing
machine: it captures the ad-hoc and subjective choices made in
the construction of the Kolmogorov complexity, and by extension,
the sophistication.

We prefer to work with numberings as it highlights an im-
portant issue: while Kolmogorov complexity is invariant to the
choice of numbering this property does not immediately carry
over to sophistication: for some treatments, the result is highly
dependent on the chosen numbering, as we will see in the next
section.

4.3 Inefficient indices

The simplest approach to sophistication would be to ‘open up’ the
Kolmogorov complexity and to see which program achieves the
smallest description length: the program that witnesses the Kol-
mogorov complexity. This witness is a two-part coding; it consists
of a model and an input.

Definition 4.1 (Index sophistication). Let ψ be an acceptable
numbering. Let M be the model class from which candidates
are chosen, and let N be the model class that determines the
minimum achievable complexity. Let c be a fixed constant. The
index sophistication is:

SM,N,ψ,c
index (x) = min

{
|i| : C{i},ψ(x) 6 CN,ψ(x) + c, i ∈M

}
.

When M = N, we will use SM,ψ,c
index . If the set over which the

minimum is taken is empty, the sophistication is undefined.

Koppel and Atlan’s treatment [57, 58], where the name so-
phistication originates, follows this basic logic, although it con-
tains idiosyncracies like the use of monotonic models, and an
extension to infinite strings. As the subsequent history of sophis-
tication has discarded these, we will not discuss them here.

In [13, 12] Koppel’s principle is limited to finite strings, with
T as a model class. The definition is similar to ST,C,ψ,c

index , except

54 THE PROBLEM OF SOPHISTICATION

the total complexity of a witness (i,y) is measured as |i| + |y|

without the cost of delimiting the two. This difference is not rel-
evant to the current discussion. The restriction to T is a common
approach, which avoids underfitting, as discussed in the next sec-
tion.

Lemma 4.1. Let Sψindex denote any index sophistication with re-
spect to numbering ψ (with any choice for M, N and c). There
are acceptable numberings ψ and ξ such that for all x: |Sψindex(x)−

Sξindex(x)| >
1
2 min{Sψindex(x),S

ξ
index(x)}.

Proof. Let zi ∈ B consist of 2i − 1 zeroes followed by a one.
Define ψ, ξ such that ψj(x) = φi(x) for j = z2i and ξj(x) = φi(x)
for j = z2i+1, with all other functions returning∞ for all inputs.
Choose any x and assume w.l.o.g. that Sψindex(x) 6 Sξindex(x). By
construction, we have 2Sψindex(x) 6 S

ξ
index(x).

Thus, the length of the index is a very poor indicator of model
complexity. For a robust measure, we define the complexity of a
function f as in [46, 91] by

CM,ψ(f) = min{CM,ψ(i) : ψi = f} . (4.1)

Lemma A.6 in the appendix shows that CC(f) and CK(f) are in-
variant.

Note that the perversely inefficient numberings of Lemma 4.1
are no issue for Kolmogorov complexity: we can use a UTM with
a more efficient numbering as a model at only a constant penalty.
For sophistication, however, the numbering is crucial.

There are two ways to use CM(f) for more robust attempts
to define sophistication. Confusingly, both are used in the liter-
ature. First, we can measure the complexity of the model φi as
CK(φi), which is then the size of the first part of a two-part code
describing the data. This approach is used in [31, 37, 91, 40].

Second, we can stick to using the length of the index as the
measure of sophistication, but restrict the allowed numberings
to those that can represent a given function efficiently. This ap-
proach is taken by Adriaans in [8], who defines facticity as SC,ψ,0

index ,
but only allows faithful numberings. Formally, a faithful number-

4.3 Inefficient indices 55

ing has the property that ∀i∃j : ψi = ψj, |j| 6 CC(ψj) + c, for
some constant c. Essentially, this means that a faithful number-
ing can represent a function f with an index the same length as
the Kolmogorov complexity CC(f).

Contrary to Adriaans’ suggestion, there do actually exist faith-
ful, acceptable numberings:

Lemma 4.2. There are faithful acceptable numberings.

Proof. Let d ∈ N be an index such that φd(y) = ∞ for all y.
Define
ψq =

{
φφi(p) if q can be written as ı̄p and φi(p) <∞,

φd otherwise.

It may seem that the second line requires a test whether φi(p)
halts, for ψ to be acceptable, but as we will show below, this is
not the case.

To show that ψ is faithful, pick any function f. Then

CC,φ(f) = min{CC,φ(i) : φi = f}

= min{min{|āb| : φa(b) = i} : φi = f}

= min{|āb| : φφa(b) = f}

= min{|āb| : ψāb = f} .

This shows there is a sufficiently small ψ index.
To show that ψ is acceptable, let φj(z) = z. Then a φ-index

i can be mapped to a ψ-index with r(i) = ̄i, so that ψr(i)(y) =
ψ̄i(y) = φi(y). For the reverse, define φv(̄ıp,y) = φφi(p)(y).
For fixed ı̄p, the snm-theorem [55] states that we can compute the
h such that φh(y) = φv(̄ıp,y). Let h(̄ıp) denote this index as
a function of the program; further define h(q) = d if q cannot
be expressed as ı̄p. By construction h is total and computable.
To check that the mapping returns the correct function, rewrite
φh(ı̄p)(y) = φv(̄ıp,y) = φφi(p)(y) = ψı̄p(y). Note that if q
can be written as ı̄p, but φi(p) diverges, h(q) will still return a
function, but one which doesn’t halt, making it equivalent to φd
as required.

56 THE PROBLEM OF SOPHISTICATION

However, even choosing a faithful numbering is not enough. The
Kolmogorov complexity uses representations of the form ı̄y, with
ψi(y) = x, where the bar denotes some straightforward prefix
encoding to delimit the model description i from its input y. If
we define a second prefix encoding ı̃, with |̄ı|− |̃ı| unbounded, we
can define a second representation ūı̃y, with ψu(̃ıy) = ψi(y), at
a constant overhead |u|, and gain more than |u| for sufficiently
complex strings, resulting again in a bounded sophistication.

We continue with a sophistication that avoids the issues of in-
efficient indices and of inefficient prefix encodings. We change
the definition of index sophistication so that its two-part repre-
sentations use CK(φi) bits for the representation of the model.
We first introduce the following notation for the M-Kolmogorov
complexity using such compact two-part representations:

CM,ψ
comp(x) = min{CK,ψ(ψi) + |y| : ψi(y) = x, i ∈M} .

For model classes K and C this is equivalent to the existing def-
inition and invariant to the numbering. Note that again, we use
C

{i},ψ
comp (x) to represent the smallest two-part code using model ψi.

Definition 4.2 (Sophistication).

SM,N,ψ,c(x) = min
{
CK(φi) : C

{i},ψ
comp 6 CN,ψ

comp(x) + c, i ∈M
}

.

4.4 Balancing under- and overfitting

In the last section, we began to see the delicate balance between
the two code components. We will study this balance, starting
with the variant SK,ψ,c, which is not used in the literature, but
helps to illustrate the issues we wish to discuss.

K has optimal representations with all but a constant part of
the information in the input and it has optimal representations
with all information in the model. The downside to this balance
is that it becomes easy to show a lack of invariance. We can
tweak the numbering so that models in a specific subset M ′ ⊂ K

become cheaper to represent by an arbitrary amount relative to
others: we can ensure that a model in M ′ always determines the
sophistication. For instance, if we let M ′ contain only a universal
model we get a bounded sophistication.

4.4 Balancing under- and overfitting 57

Theorem 4.1 (Underfitting). Let M,N be model classes with
M ⊆ N and let M contain a universal model φu, with the prop-
erty that ∃c∀i ∈ N, x ∈ B : C

{u},φ
comp (x) 6 CN,φ

comp(x) + c. Then, for
some numbering ψ, SM,N,ψ,c is bounded.

This problem is well known and many treatments avoid it by
restricting the model class. Less well known, perhaps, is that
the same holds in the other direction: if M ′ is the set of sin-
gleton models—those models that output a single x for an empty
input—we get a sophistication equal to the Kolmogorov complex-
ity.

Theorem 4.2 (Overfitting). Let X ⊆ B. Let M ⊆ N ⊆ K be model
classes where for every x ∈ X there is a singleton model i ∈ M

with φi(ε) = x. Then there is a numbering ψ, and a constant c,
such that for all x ∈ X we have CK(x) − SM,N,ψ,c(x) 6 c.

The proofs of both theorems rely on a simple principle: there
exist numberings which have the effect of penalizing CK(φi) for
any model outside M ′ by an arbitrary constant amount. We can
use this to effectively ‘push’ these models outside of the range
of candidates, ensuring that, under this numbering, a model in
M ′ always determines the sophistication. The requirements for
M ′ are somewhat complex. The following lemma gives a set of
sufficient conditions.

Lemma 4.3. Let M and N be any model class, let X be any set
of binary strings and let D : B → N be a partial computable
decoding function with a prefix-free domain that maps function
descriptions to their indices in φ. Let M ′ = range(D). Further
assume there is a constant c such that:

(a) ∀m∈M′ : min{|p| : φD(p) = φm} 6 CK,φ(φm) + c

(b) ∀x∈X : CM′,φ
comp (x) − CN,φ

comp(x) 6 c.

Then, there is a ψ such that if SM,N,ψ,k(x) is defined, then
SM,N,ψ,k(x) = SM

′,N,ψ,k(x) up to a constant.

Proof. Pick any x ∈ X. Let f and g be φ-indices such that f ∈M ′

and g /∈ M ′ nor is φg equivalent to any function indexed by M ′.
Furthermore let C{f},φ

comp (x) and C{g},φ
comp (x) both be within a constant

58 THE PROBLEM OF SOPHISTICATION

q of CN,φ
comp(x). Assumption (b) ensures that M ′ always provides

such an f.
We will show that for every integer r, there is a numbering ψ

such that C{g′},ψ
comp (x)−C

{f′},ψ
comp (x) > r for all x ∈ X, where f ′ and g ′

are the ψ-indices equivalent to f and g. Thus, for large enough r,
φg is eliminated as a candidate model, while φf remains in place.
Thus, under ψ, a member of M ′ determines the sophistication, or
the sophistication is undefined.

Let d be a positive constant. We will show later how to choose
it to achieve the required result. We define ψ as follows:

ψ0(p) = 0d1D(p)

ψ0d1i(p) = φi(p)

ψj(·) =∞ if j 6= 0 and j 6= 0d1 . . .

The key to the proof is the way that the function complexityCK(·)
changes when we change the numbering from φ to ψ. For f,
the value increases by no more than a fixed constant, but for
g, it increases by a constant that we can arbitrarily increase by
increasing d.

We will first show that for f, the value does not increase by
more than a constant cf. Assume w.l.o.g. that 0 ∈ K.

CK,ψ(φf) = min
{
|̄q| : ψψj(q) = φf, j ∈ K

}
rewriting (4.1)

6 min
{
|0q| : ψψ0(q) = φf

}
choose j = 0

= min
{
|q| : φD(q) = φf

}
+ |0|

6 CK,φ(φf) + cf by assumption (a).

In order to show that for g, we can increase the difference by an
arbitrary constant, we first show that, for any z not in the range
of ψ0, the Kolmogorov complexity itself increases by at least d

4.4 Balancing under- and overfitting 59

when we switch from φ to ψ:

CK,ψ(z) = min {|̄ıy| : ψi(y) = z, i ∈ K} by definition

= min
{
|0d1jy| : ψ0d1j(y) = z

}
since z /∈ range(ψ0)

> min {|̄y| : φj(y) = z}+ d

= CK,φ(z) + d . (4.2)

We now show the increase in model complexity for g. First, as-
sume φg 6= ψ0:

CK,ψ(φg) = min
{
CK,ψ(i) : ψi = φg

}
= min

{
CK,ψ(0d1j) : φj = φg

}
= CK,ψ(0d1j)

> CK,φ(0d1j) + d by (4.2)

> CK,φ(j) − cg + d since CK(j) 6 CK(0d1j) + c0

> CK,φ(φg) − cg + d .

Now assume φg = ψ0. We have

CK,ψ(φg) = min
{
CK,ψ(i) : ψi = ψ0

}
> d .

This follows from the fact that the minimum is achieved either at
i = 0 or at i = 0d1mwithm /∈M ′. Neither have a representation
using a function with a ψ-index without the 0d1 prefix.

Choosing d > r+ max
{
CK,φ(ψ0), cg

}
+ cf + 2q ensures that

for both cases, we have CK,ψ(φg) > CK,φ(φg) + r + cf + 2q.
While CK(ψ0) depends on the choice of d, we have CK(ψ0) 6
CK(d)+CK(D), up to a constant, which is in O(logd), so we can
choose d to satisfy the inequality.

60 THE PROBLEM OF SOPHISTICATION

Finally, we can show the result:

C
{g′},ψ
comp (x) − C

{f′},ψ
comp (x)

= CK,ψ(φg) + min{|y| : φg(y) = x}

− CK,ψ(φf) − min{|y| : φf(y) = x}

> CK,φ(φg) + r+ cf + 2q+ min{|y| : φg(y) = x}

− CK,φ(φf) − cf − min{|y| : φf(y) = x}

= C
{g},φ
comp (x) − C

{f},φ
comp (x) + r+ 2q > r .

Theorems 4.1 and 4.2 follow as corollaries. For Theorem 4.1:
Proof. Let D be a prefix function as in Lemma 4.3 that returns
the index of u for the argument ε and∞ for any other argument.
That is, M ′ = {u}. This construction satisfies the conditions 1
and 2 from Lemma 4.3. Invoking it, we find that there exists an
acceptable numbering ψ for which SM,N,ψ,k(x) = SM

′,N,φ,k(x) +

c. Since M ′ contains only a single model, SM
′,N,φ,c(x) is con-

stant.

And for Theorem 4.2:
Proof. Let x be any string. Given a description of x, we construct
some index i such that φi(ε) = x (a singleton for x). Thus,
CK,ψ(φi) 6 CK,ψ(x) up to a constant. Likewise, given φ we can
produce x, so that |CK,φ(φi)−C

K,φ(x)| 6 c for some constant c.
We now define a computable function D by D(̄ıy) = j where

φj(ε) = φi(y) and i ∈ K, and let M ′ be its range. We will show
that the two conditions of Lemma 4.3 hold for the prefix function
D.

(a) Let f ∈ M ′ with φf(ε) = x. Then min{|p| : ψD(p) = φf} =

min{|̄ıq| : φi(q) = x} = CK(x) 6 CK(φf) + c. (b) On the one
hand CM′,ψ

comp (x) 6 CK(φf) + |ε| 6 CK(x) + c. On the other hand,
the witness to CM,ψ

comp(x) is an effective description of x, so CK(x)

is at most a constant larger.
Now, by Lemma 4.3 there is a numbering ψ such that we have

4.4 Balancing under- and overfitting 61

SM,N,ψ,k(x) = SM
′,N,ψ,k(x) + c. We observed that |CK(φi) −

CK(x)| 6 c0 for all singletons, so SM
′,N,ψ,k(x) > CK,ψ(x) − c0.

This proves the theorem.

Thus, in this balanced sophistication, there is no invariance: all
information can be seen as structure, or as noise, depending on
the numbering. To avoid these issues, existing proposals upset
the balance to exclude or penalize the universal models, and pos-
sibly the singleton models.

4.4.1 Overfitting

We will now review the treatments in the literature that show
overfitting. The first is the structure function, proposed by Kol-
mogorov, most likely the first attempt at separating structure
from noise in an objective manner. Kolmogorov defined the fol-
lowing function, using the finite sets F as models:

hx(α) = min
{

log |F| : x ∈ F,CK(F) 6 α
}

and suggested that the smallest set for which CK(F) + log |F| 6
CK(x) + c holds for some pre-chosen constant c, can be seen as
capturing all the structure in x [31]. This is equivalent to the
sophistication SF,K,ψ,c(x). Theorem 4.2 shows there are num-
berings for which this sophistication is always equal to CK(x).
Thus, either this is true for all numberings, or this sophistication
is not invariant.

In [37] the structure function is extended to an algorithmic
sufficient statistic. This is, again, essentially the witness to the
sophistication SF,K,ψ,c(x). A probabilistic version is also intro-
duced, which uses the model class P, which indexes the set of
functions that compute computable probability semimeasures up
to a multiplicative constant error, yielding SP,K,ψ,c(x). For both,
Lemma 4.2 gives us a numbering such that the singleton is always
the minimal sufficient statistic.

It may be argued that the slack parameter c in the sophisti-
cation, which determines the allowed gap between a candidate
representation and the complexity, should depend on the num-
bering, but this dependence has not been mentioned in the liter-
ature and there is no obvious method to choose this constant for

62 THE PROBLEM OF SOPHISTICATION

a given numbering.
In traditional statistics, overfitting is often addressed by a pe-

nalty on complex models. As we have seen, a strong penalty,
such as the one imposed by an inefficient prefix encoding of the
model, will cause underfitting. A more subtle approach is to al-
low descriptions that are not self-delimiting. The gap between
the smallest self-delimiting description and the smallest non self-
delimiting description grows without bound [63, Section 4.5.5],
so that some information ends up in the noise, since placing all
information in the model results in a self-delimiting, and thus
non-optimal description. This eliminates the singletons as viable
candidates. This approach is taken by Vitányi [91] and by Adri-
aans [8]. Such measures reduce the overfitting problem, but they
only increase the tendency to underfit. We also pay the price that
the models can no longer be equated with probability measures,
weakening the link to traditional statistics.

4.4.2 Underfitting

Universal models are a widely acknowledged problem for sophis-
tication, and most proposals avoid them by limiting the allowed
models to exclude them. It is known that there are strings x for
which SF,K,ψ,c(x), ST,ψ,c(x) and ST,K,ψ,c(x) are close to |x| (up to
a logarithmic term). Proofs can be found in [37], [13] and [91]
respectively. These are the absolutely non-stochastic strings [83].
The existence of these strings is independent of the numbering.

However, the problem of the singletons remains. Only one
model class eliminates both the singletons and the universal mo-
del: T. The only proposal we are aware of that uses an efficient
model representation and excludes the universal models and ex-
cludes the singletons is: ST,K,ψ,c, from [91]. While this avoids
our proofs of boundedness, there is no evidence that ST,K,ψ,c is
actually invariant.

While high sophistication strings exist for ST,K,ψ,c, they may
not conform to sophistication’s motivating intuition. To show
this, we use the concept of depth:

Definition 4.3 (Depth[20, 11]). Let U be some universal Turing
machine, so that U(̄ıy) = φi(y). Let Ut be a simulation of this

4.4 Balancing under- and overfitting 63

machine, which is allowed to run for at most t steps, and returns
0 if it has not yet finished at that point. Let CM

t (x) = min{|̄ıy| :
Ut(̄ıy) = x,φi ∈M}. The c-depth is

dM,c(x) = min
{
t : CM

t (x) − CM(x) 6 c
}

.

Deep strings are those that can only be optimally compressed
with a great investment of time. As we saw in the last chapter,
it is exceedingly unlikely that a deep string is sampled from a
shallow distribution [20].

Theorem 4.3. LetA(n) be the single-argument Ackermann func-
tion and cd some constant. For all k, there is a numbering ψ such
that for all strings x with depth dC,cd(x) 6 A(CC(x)) the sophis-
tication ST,K,ψ,k(x) is bounded.

Proof. Let U(̄ıy) be a universal Turing machine, and let UA(̄ıy)
be a simulation of that machine which outputs 0 if the number
of steps taken exceeds A(|̄ıy|). Let u be the index of the function
UA in the standard enumeration.

LetD(ε) = u. We can instantiate Lemma 4.3 withD, M ′ = {u}

and X = {x : dC,cd(x) 6 A(CC(x))}. This tells us that there exists
a numbering ψ for which ST,K,ψ,k(x) = SM

′,K,ψ,k(x)+ |0̄| 6 c for
all x ∈ X.

This shows that while high-sophistication strings exist, they do
not behave as expected. Consider a string that is typical for a
shallow model, say some elaborate probabilistic automaton. Un-
der ST,K,ψ,c, no matter how high the complexity of the automa-
ton, the sophistication is bounded. We could encode the collected
works of Shakespeare in its transition graph, and this information
would be counted as noise. Any structure simple enough to be
exploited within the time bound of the Ackermann function will
not be seen as ‘meaningful information’. Only structure so deep
that it would take beyond the lifetime of the universe to decom-
press would count towards sophistication. In the remainder we
will refer to strings x with dC,c(x) 6 A(CC(x)) as shallow strings.
Note that any string whose shortest program can be run in any
time bound represented by a primitive recursive function is shal-
low.

64 THE PROBLEM OF SOPHISTICATION

The relation between S(x) and d(x) is also investigated in
[12], where it is shown that within a logarithmic error term on
the sophistication and the slack, they are identical. Our point
is not the similarity between the two, but that for all practical
strings, the sophistication is bounded. This contradicts the intu-
ition that sophistication measures structure, as it seems to sug-
gest that all strings we can possibly hope to understand or gener-
ate contain no structure, save a constant amount. The alternative
is that under other numberings these strings do have structure,
but then the sophistication is not invariant.

As for the strings with high sophistication, they have the prop-
erty that they can be compressed far better with partial functions
than with total: they are non-typical for the model class T. This
suggests that the ‘non-stochastic’ property of strings with high so-
phistication [83, 90] says more about depth and totality than it
does about structure and noise.

4.4.3 Other variants

By moving away from the idea of two-part coding, the mechanics
of lemma 4.3 can be avoided. In [68], the naive sophistication
is introduced. We will define a generic version, parametrized by
model class. Let Cψi

(x) = min {|y| : ψi(y) = x}. Then we define
the naive sophistication as:

SM,ψ,c
naive (x) = min

{
CK,ψ(ψi) : Cψi

(x) − CK,ψ(x | i) 6 c, i ∈M
}

.

The condition now is not that the two-part code length is mini-
mal, but that the randomness deficiency Cψi

(x) − CK,ψ(x | i) is
less than a constant. SF,ψ,c

naive (x) corresponds to the version in [68].
The switch to the randomness deficiency avoids Theorem 4.2, but
we end up with the same problem as in Theorem 4.3: for shallow
strings ST,ψ,c

naive is defined by the model UA, and thus bounded.
We cannot show that SF,ψ,c

naive (x) is bounded for shallow strings,
but this is only a consequence of the use of sets, not of the
switch to randomness deficiency as a condition. Any set sophis-
tication is necessarily lower-bounded by the function set(x) =

min
{
CK(F) : x ∈ F

}
and if this function were bounded, it would

suggest that a finite amount of finite sets contained all strings.

4.4 Balancing under- and overfitting 65

Theorem 4.4. Let ψ be any acceptable numbering. Then for all
shallow x and large enough c, ST,K,ψ,c

naive (x) is bounded and for
come constant cF, we have:

set(x) 6 SF,K,ψ,c
naive (x) 6 CK,ψ(CK,ψ(x)) + cF .

Proof. Let ψ be any acceptable numbering. Let the Turing ma-
chine U be defined as U(̄ıy) = ψi(y) if i ∈ K, and U(̄ıy) =∞ otherwise. Let UA be derived from U as in section in Sec-
tion 4.4.2 and let φu compute UA.

For the first part we have Cψu
(x) − CK,ψ(x | u) 6 c0 for

some c0, thus for large enough c, ST,ψ,c
naive (x) 6 CK(ψu). For the

second part, let CK,ψ(x) = k and FAk = {x | ∃p : UA(p) = x, |p| =
k}. |FAk | 6 |{p : |p| = k}|, so that log |FAk | 6 k, which gives us
log |FAk |−C

K,ψ(x | FAk) 6 c1. Thus, for large enough c, SF,ψ,c
naive (x) 6

CK(FAk). From a description of k, we can compute FAk with a finite
program, so that CK,ψ(FAk) 6 C

K,ψ(k)+ cF, which completes the
proof.

Note that the constant c only needs to be large enough to ensure
that CK,ψ(x) −CK,ψ(x | u) 6 c and CK,ψ(x) −CK,ψ(x | FAk) 6 c.
Since u and FAk are generally of no value in computing x, c is
likely very small.

Another approach is the coarse sophistication [13], defined in
[68] as:

SM,N,ψ
coarse (x) = min

c

{
SM,N,ψ,c(x) + c

}
.

Again, this variant avoids the pitfalls of Theorem 4.2. If there are
candidates that are as good as the singletons but with smaller size
by more than a constant, the constant penalty c will eventually
be much less than the gain for the simpler witness, and the sin-
gletons will not determine the coarse sophistication. The coarse
sophistication is within a logarithmic term of the busy beaver
depth [13]. As with the naive sophistication, we can show that
for shallow strings, the total function version is bounded, and the
set version grows very slowly:

Theorem 4.5. Let ψ be any acceptable numbering. For all shal-

66 THE PROBLEM OF SOPHISTICATION

low x, ST,K,ψ
coarse (x) is bounded and there is a constant cF such that:

set(x) 6 sF,K,ψ
coarse (x) 6 2CK,ψ(CK,ψ(x)) + cF .

Proof. Let ψ be any acceptable numbering and define UA, φu
and FAk as in the proof of Theorem 4.4. For the first part, we
know that for some constant c0, C{u},ψ

comp (x) 6 CK,ψ
comp(x)+c0 so that

ST,K,ψ,c0(x) 6 CK,ψ(φu), thus ST,K,ψ
coarse (x) 6 CK,ψ(φu) + c0. For

the second part, we know that for some c1, CK,ψ(FAk)+ log |FAk | 6
CK,ψ(k) +CK,ψ(x) + c1, so that SF,K,ψ,CK(k)+c1(x) 6 CK,ψ(FAk).
Thus, SF,K,ψ

coarse (x) 6 CK,ψ(FAk)+C
K,ψ(k)+c1 = 2CK,ψ(CK,ψ(x))+

cF.

In [89], Vereshchagin proposes a strongly algorithmic sufficient
statistic. Where the regular algorithmic sufficient statistic F from
[37] has CK(F | x) constant, the strong variant imposes the
stronger requirement that CT(F | x) is also constant. This re-
duces the problems of underfitting discussed in this section, but
since CT({x} | x) is bounded, by Theorem 4.2, overfitting remains
a problem: there exist numberings under which the singletons
are the only candidates.

Finally, effective complexity [40], proposed by Gell-Man and
Lloyd, was formulated from the perspective of physics, but fits
the mold of sophistication. The model class consists of all com-
putable probability distributions on finite sets. The complexity of
the model is measured by its Kolmogorov complexity, avoiding
the problems of Section 4.3. Theorem 4.2, however, still applies
to effective complexity. Unlike other sophistication measures, it
is not the candidate with the smallest model which is chosen,
but the one which reproduces the data within the shortest time.
Thus, if there are multiple candidates, this approach would likely
favor the singletons. In [41], the authors abandon this strategy,
and note that the choice from the set of candidates is a subjective
one, which depends on context, which is in line with the view we
express in the next section.

4.5 Discussion and conclusion

We have criticized existing measures of sophistication and shown
technical problems with all of them. But that does not in itself

4.5 Discussion and conclusion 67

mean that it should be impossible to come up with a sound mea-
sure. The common intuition, starting with the structure function,
appears to be that the crucial property is whether a string is typ-
ical for a model, and that this typicality can be tested: another
random choice from that model should select a string with the
same structure. This idea is bold, but not unreasonable. Nev-
ertheless, we offer the opinion that such a clean-cut separation
cannot be made to work. We provide two arguments.

For the first argument, we take a generative perspective. We
can generate data from a model φi, i ∈ K, by feeding it ran-
dom bits until it produces an output. We will call the resulting
probability distribution pi. Call a sophistication consistent if, for
sufficiently large data, it reflects the complexity of the source of
the data. Now, let φu(̄ıy) = φi(y) and sample from pu. Then
the initial bits will determine the prefix encoded index ı̄ of the
function φi that φu will subsequently emulate, and the remain-
ing bits are used as inputs to φi. We now ask, what should be the
sophistication of the resulting data?

Certainly, if we have to judge based only on the data, we can-
not exclude the possibility that the data was sampled from pu:
after all, it was. Yet, neither can we deny that it may have came
from pi, as again, it did. Eliminating the universal models does
not solve this problem: the same argument holds if φu indexes,
for instance, only those models computable by finite automata.
Any model that dominates a set of other models creates this kind
of ambiguity.

This shows clearly the limits of the single sample setting: with
a second sample, the distinction would be easily made. The prob-
ability that a second sample from φu chooses φi again is negli-
gable. If we get another sample that is likely to have come from
φi, we have evidence to dismiss φu as a model.

Consider the following metaphor. We are given a a bitmap
image of the painting Impression of a Sunrise. There are many
good models for this string, from very generic to very specific.
Sophistication suggests that we can choose one of these as the
objective, intrinsic model of the data. The universal model says
that it is ‘some compressible, finite object’. Another might say
that it is ‘an image’. Even more specific would be ‘a painting’,

68 THE PROBLEM OF SOPHISTICATION

‘a Monet’, or specifically ‘the painting Impression of a Sunrise’. A
sound sophistication should be able to select one of these as the
proper representation of structure in the data, and disqualify the
others as over- or underfitting. But how should we be able to say
that the data is intrinsically more of a painting than an image?
More of a Monet than a painting? Intuitively, such distinctions
require further assumptions, or a second sample from the same
distribution.

The second reason we doubt sophistication is more techni-
cal. Consider the set of all possible two-part representations of
x. When the numbering is changed, the codelength of the model
part of all these representations will change. This is illustrated
in the second diagram in Figure 4.1. The invariance theorem ex-
presses that this change is limited by a constant term. However,
even this small shift can push some representations out of the
acceptable region (indicated by the dashed line), and pull others
in. This may lead to a different representation determining the
sophistication, one whose total codelength is close to what it was
before, but whose model codelength can be anywhere between
0 and CC(x). If such jumps can occur, the sophistication is not
invariant. And while we cannot prove in general that such jumps
can always occur, there seems to be no reason to believe that they
do not. Indeed, in [12] it is shown that logarithmic changes in
the slack parameter can already cause these effects.

So we take a skeptical view of sophistication. Note that part of
the theory is fine: there is nothing wrong with evaluating models
for the data by comparing their two-part code lengths. In fact,
the randomness deficiency − logpi(x) − CK(x | i) has a direct
statistical interpretation as a measure of counterevidence—under
pi, the probability of a randomness deficiency above k is less than
2−k [23, Lemma 6]. In the Monet example above, this will allow
us to disqualify the model expressing that the data is actually, say,
a recording of jazz music.

But fundamental problems arise as soon as a hard cut-off is
introduced on how far we are allowed to deviate from the min-
imum determined by the Kolmogorov complexity. In our opin-
ion, a lot of measures taken in the literature, such as restricting
the model class or introducing model penalties, complicate the

4.5 Discussion and conclusion 69

method and make problems harder to analyze, without actually
addressing the fundamental issue. This is dangerous: if such ad-
hoc fixes result in a theory that is hard to prove either wrong
or right, it creates an artificial dead end for a valuable area of
research. When the hard cut-off on candidates is avoided, how-
ever, all such measures are no longer necessary. What remains
is an elegant theory that can be used to sift through all possi-
ble models, disproving most while retaining a select number of
interesting candidates for our further consideration.

In the next chapter, we take this approach to attack a prac-
tical problem: finding patterns in graphs. Instead of attempt-
ing to confirm the patterns as true—that is, performing model
selection—we will compute several bounds on the Kolmogorov
complexity and use the no-hypercompression inequality to reject
models.

5 · COMPRESSION AS A MEASURE OF

NETWORK MOTIF RELEVANCE

The material in this chapter is adapted from the paper Compression
as a measure of network motif relevance, P. Bloem, S. de Rooij,
This paper is currently under submission at PLOS ONE.

In our perspective, every statistician has a only a single sample.
The fact that some may treat theirs as a series of independent
draws is just an assumption about the source of that single sam-
ple. The data can be cut into chunks that are in some sense
similar, and that similarity allows them to reconstruct the source
of the data.

The benefit of this view is clear when we realize that other
statisticians are not so lucky. For instance, those faced with
graphs: a social network, a citation network or the webgraph.
These are densely interconnected objects. Following friendship
links on Facebook, we can trace a path between any two random
subscribers through only 3.74 intermediaries on average [16].
Everybody is close to everybody else. This is one of the features
that makes such networks so useful for things like information
transfer. But it raises a question: if everybody is close to every-
body else, what constitutes a “neighbourhood”? How do we slice
up the network into similar pieces? We know that social net-
works, at least contain clusters of friends, but finding them is no
small task.

A promising approach is that of network motifs: simply look
for small subgraphs that recur frequently. These may point to
communities, or to “functional units” of the network, performing
the same task in different contexts. We investigate network mo-
tifs and show that the correspondence between descriptions and
probabilities can be very valuable in the analysis of graphs.

Since the last chapter has shown that unless our model class is
relatively limited, consistent model selection is likely a hopeless
business, we will take a different tack. Instead of attempting to

72 COMPRESSION FOR NETWORK MOTIF RELEVANCE

select the true model, we will use the no-hypercompression in-
equality to reject models. This will not allow us to find “true” pat-
terns, necessarily, but it will provide us with patterns that might
be true. A list of candidates on which a domain expert can build.
In short we will use the principles developed so far to perform
exploratory analysis.

5.1 Network Motifs

Network motifs [67] provide an intuitive way to analyze graph
structure. They are small, frequently occurring subgraphs. To be
able to conclude that such frequent subgraphs really represent
meaningful aspects of the data, we must first show that they are
not simply a product of chance. That is, any subgraph may simply
be a frequent subgraph in any random graph: a subgraph is only
a motif if its frequency is higher than expected.

This expectation is defined in reference to a null-model: a
probability distribution over graphs. We determine what the ex-
pected frequency of the subgraph is under the null-model, and
if the observed frequency is substantially higher than this expec-
tation, the subgraph is a motif. If the frequency is lower than
expected, the subgraph is called an anti-motif.

The choice of null-model is an important aspect of the analy-
sis. Consider the case explored in [24], where the data is directed
and acyclic, as in the case of a citation graph. If the null model
allows graph cycles, then any subgraph containing a cycle will
be an anti-motif. Such motifs show only that the data is acyclic,
and obscure any deeper structure. A model that produces ran-
dom acyclic graphs will fit the data better, and will allow us to
explore deeper structure. This shows the role of the null-model:
the better we model the known structure in the data, the better
we can expose the unknown structure.

However, there is usually no efficient way to compute the ex-
pected frequency of a subgraph under a null model. The most
common approach is to generate a large number of random
graphs, say 1000, from the null-model and compare the frequen-
cies of the subgraph found in this sample to its frequency in the
data [67]. This means that any resources invested in extracting
the motifs from the data must be invested again 1000 times to

5.1 Network Motifs 73

find out which subgraphs are motifs.
We introduce an alternative method that does not require us

to repeat the motif search on samples from the null model. We
use two probability distributions on graphs: the null model
pnull(G), and a distribution pmotif(G) under which graphs with
one or more frequent subgraphs have high probability. If pmotif(G)

is larger than pnull(G), the subgraph is a motif. Section 5.2 ex-
plains the principle and its theoretical justification.

To design pmotif, we make use of the Minimum Description
Length (MDL) Principle [79, 47]. It can be shown that any de-
scription method L, a code, corresponds to a probability distribu-
tion pL in such a way that a graph G with a short description
under L will have a high probability under pL. This correspon-
dence is detailed in the preliminaries. Thus, we only need to
design a code that exploits recurring subgraphs to give us a prob-
ability distribution that assigns graphs with recurring subgraphs
higher probability. In brief, we accomplish this by describing the
motif only once, and referring back to this description wherever
the motif occurs. Since we do not need to describe the motif ex-
plicitly for every occurrence, graphs with a high frequency of a
certain motif will have a short description length, and thus a high
probability. The code is described in Section 5.3.

Our method has several advantages:

• The search for motifs only needs to be run once: on the
data G. To compare the result against the null-model, we
only need to know pnull(G).

• The number of motif instances found does not need to be an
accurate estimate of the number present in the graph. The
only aim is to find a sufficiently large set of non-overlapping
instances in the data, to prove that the subgraph is a motif.
This allows faster and simpler search algorithms to be used.

• Given sufficiently strong evidence, a single test can be used
to eliminate multiple null models. This is explained in Sec-
tion 5.2.

We perform several experiments to validate these claims. First,
we create random graphs with a number of occurrences of a spe-
cific subgraph inserted. We then show that our method can iden-

74 COMPRESSION FOR NETWORK MOTIF RELEVANCE

tify the subgraphs very precisely, even if only a small number
were added. Secondly, we illustrate the behavior of the method
on two directed, and two undirected graphs, using three differ-
ent null models. Finally, to show what is possible with fast null
models, we run the method on a dataset of a million nodes and
13 million links. This analysis was run in just under 6 hours in
a single-threaded implementation, showing the scalability of the
method.

All software and data used in this chapter is available under
the MIT License.1

5.1.1 Related work

Motif analysis has been applied in many domains, such as the
study of biological networks [94], the problem of community de-
tection in social networks [7] and the investigation of neural net-
works [84]. Motif extraction is a form of subgraph mining. How-
ever, while general subgraph mining tends to focus on finding
frequent subgraphs, motif extraction focuses more on the prob-
lem of finding meaningful subgraphs, usually with the help of
significance tests. Our method facilitates the computation of the
significance test, and can be combined with any subgraph mining
algorithm.

The idea of the network motif was first introduced under that
name in [67]. In that paper, a computationally expensive, com-
prehensive search for motifs was used. Later, in [52], a simple
sampling algorithm was introduced which is able find the most
frequent motifs of many graphs with as little as 500 samples.
However, as noted in [93], it is highly biased.

A different solution to the problem of repeating the motif
search on samples from the null model is provided in [93]: there,
a faster and more correct sampling algorithm is provided, to-
gether with a technique to compute the subgraph frequencies in-
directly from a single search on the data. However, this technique
is restricted to the use of a specific null-model, and then only with
a particular sampling method. As noted in the introduction, the
restriction to one null-model is a serious drawback, and as noted
in [42], this particular sampling method lacks strong guarantees

1https://github.com/Data2Semantics/nodes/wiki/Motifs

https://github.com/Data2Semantics/nodes/wiki/Motifs

5.1 Network Motifs 75

on mixing time. [77] provides a good overview of other algo-
rithms available for motif analysis.

The idea that compression can be used as a heuristic for sub-
graph discovery was also used in the SUBDUE algorithm by Cook
and Holder [30]. We introduce a different compression method,
connect it to the framework of motif analysis, and make the sta-
tistical implications precise.

In this work, all candidate-motifs are induced subgraphs. This
is not common to all motif analysis; in some settings the instances
of the motif are allowed to have additional internal links that are
not part of the motif [25]. While our method could be adapted
to find such motifs, we will not discuss such adaptations here.

5.1.2 Preliminaries: graphs and codes

Graphs A graph G of size n is a tuple (N,L) containing a set of
nodes N and a set of links L. For convenience in defining prob-
ability distributions on graphs, N is always the set of the first n
natural numbers. L contains pairs of elements fromN. LetNG be
the nodeset of G and LG be its linkset. For the dimensions of the
graph we use the functions n(G) = |NG| and m(G) = |LG|. If a
graph G is directed, the pairs in LG are ordered, if it is undirected,
they are unordered. A multigraph has the same definition as a
graph, but with LG a multiset, i.e. the same link can occur more
than once.

A simple graph is a graph where no link connects a node to
itself. There are many types of graphs and tailoring a method
to all of them is a laborious task. Here, we limit ourselves to
datasets that are simple graphs. This is usually the most complex
setting, so that we can trust that a method that works for simple
graphs is easily translated to other settings.

Two graphs G and H are isomorphic if there exists a bijection
f : NG → NH on the nodes of G such that two nodes a and b are
adjacent in G if and only if f(a) and f(b) are adjacent in H. If
two graphs G and H are isomorphic, we say that they belong to
the same isomorphism class [G].

The distinction between G and [G] is important. Often, G is
given with the nodes in arbitrary order and we are actually only
interested in the properties shared by all graphs in [G]. How-

76 COMPRESSION FOR NETWORK MOTIF RELEVANCE

ever, such analyses on [G] can prove to be very expensive. For
this reason, almost all literature on complex networks, analyzes
graphs rather than isomorphism classes. Sometimes, the result is
the same in both cases. For instance, let pa and pb be two graph
models that are both uniform within every isomorphism class, i.e.
∀H ∈ [G] : p(H) = p(G). Then, the relative magnitude of pa(G)
and pb(G) is the same as that of pa([G]) and pb([G]). There are
other cases, however, where the analysis on G must be seen as
an approximation to the desired analysis on [G].

Codes In previous chapters, we built the idea of a description
method on top of Turing machines. In this chapter, it is more
efficient to construct description methods directly from a cor-
respondence to probability distribitions, forgetting about Turing
machines for the time being.

Let B, again, be the set of all finite-length binary strings. We
use |b| to represent the length of b ∈ B. Let log(x) = log2(x). A
code for a set of graphs G is an injective function f : G → B. It
is self-delimiting if no code word is the prefix of another. We will
denote a codelength function with the letter L, i.e. L(G) = |f(G)|.
It is common practice to compute L directly, without explicitly
computing the codewords. In fact, we will adopt the convention
of referring to L itself as a code.

A well known result in information theory is the association
between codes and probability distributions, implied by the Kraft
inequality: for each probability distribution p∗ on G, there exists
a self-delimiting code L∗ such that for all G ∈ G: − logp∗(G) 6
L∗(G) < − logp∗(G) + 1. Inversely, for each self-delimiting code
L∗ for G, there exists a probability distribution p∗ such that for all
G ∈ G: p∗(G) = 2−L∗(G). For proofs, see [47, Section 3.2.1] or
[32, Theorem 5.2.1]. To give an intuition, note that we can easily
transform a code L∗ into a sampling algorithm for p∗ by feeding
the decoding function random bits until it produces an output.
To transform a probability distribution to a code, techniques like
arithmetic coding [81] can be used. Lemma 3.1 also provides
evidence for this correspondence.

As explained in [47, page 96], the discrepancy between
− logp∗(G) and L∗(G) can be safely ignored and we may iden-

5.2 Model selection by codelength 77

tify codes with probability distributions. Thus we allow L(G) to
take non-integer values.

When we need to encode a single choice from a finite set S
of options, we will often use the code with length log |S|, corre-
sponding to a uniform probability on S.

5.2 Model selection by codelength

The association between codes and probability distributions is
particularly useful in the design of graph models: many structural
properties can easily be exploited to encode a graph efficiently.
Consider an undirected graph G containing a large clique: all
nodes in some subset NC ⊆ NG are connected to one another
directly. We can describe the graph by first describing NC, and
then describing G in a canonical manner. Since every node inNC
is connected to every other node in the clique, we can omit these
links from the second part of our description, shortening the total
description length, if NC is large enough. By the correspondence
mentioned in the preliminaries, this gives us not just a code Lclique

with short codelengths for graphs with large cliques, but also a
probability distribution pclique with high probabilities for graphs
with large cliques.

Of course, there is no guarantee that of all the distributions
with a bias towards large cliques, pclique matches the source of
our data. Luckily, it does not need to. The presence of the clique
disproves the hypothesis that the data came from the null-model,
so long as we can show that our clique-based model encodes the
data more efficiently.

We return to the no-hypercompression inequality: under the
hypothesis that the null-model was the source of the data, we
can show that the probability that any other model compresses
the data better by k bits or more, decays exponentially in k.
More precisely, let pnull(x) be any probability distribution, with
Lnull(x) = − logpnull(x) and let L(x) be any code, then we have:

pnull
(
Lnull(x) − L(x) > k

)
6 2−k .

Thus, under the null-model, the probability that Lclique will com-
press the data better than the null-model by 10 bits or more is
less than one in one-thousand. For twenty bits, we get one in a

78 COMPRESSION FOR NETWORK MOTIF RELEVANCE

million, for thirty bits, one in a billion, and so on. So while a
low codelength under Lclique does not prove that the clique-code
is the true model, it does allow us to comfortably reject the null
model.

We can interpret this procedure as a significance test: the dif-
ference in compression D between the null model and the al-
ternative model is a statistic [47, Example 14.2]. The no-hy-
percompression inequality gives us a bound on the probability
pnull(D > k). To reject the null-model with significance level α,
we must find some code on the set of all graphs and show that
it compresses the data better than the null-model by k bits, with
2−k 6 α. Any code will do, so long as it was chosen before seeing
the data.

Note that D is also the logarithm of the likelihood ratio be-
tween the null model and L, so we can see this as a likelihood
ratio test. We can also interpret the difference in codelength be-
tween two models pa and pb as the logarithm of the Bayes factor
pa(x)/pb(x) [47, Section 14.2.3].

Now, while our test only rejects the null-model, and does not
confirm anything, we would like to make sure that it was the
pattern we are interested in (e.g. the clique) that allowed us
to reject the null model, and not some other aspect of the al-
ternative model. To ensure this, we aim to have the alternative
model exploit only the pattern, and nothing else. We use the null
model for everything but the pattern. For instance, in the exam-
ple above, the clique model must store the graph minus the links
of the clique. If we use the null model for this, we know that the
only change between the null model and the alternative is the
use of the clique, so that must be what made the difference.

A final benefit of this method is that we can reject multiple
null models with a single test. In many situations we will have a
function B(G) that lower bounds any code in some set L. If our
alternative model provides a codelength below B(G) − kα with
kα the number of bits required for our chosen α, we can reject
all of L.

As an example, Let Gn be the set of all undirected graphs of

5.2 Model selection by codelength 79

size n. We can define a uniform code on such graphs:

Luniform
n (G) = log |Gn| (for any G ∈ Gn) .

This code captures the idea that the size of the graph is the only
informative statistic: given the size, all graphs are equally likely.
This is a good null-model to test the assumption that the graph
contains no significant structure, save for its size. However, it is
parametrized. It is currently not a code on all graphs, just those
of size n. To turn it into a code that can represent all graphs, we
need to encode the parameter n as well, with some code over the
natural numbers

Lcomplete(G) = LN(n(G)) + Luniform
n(G) (G) .

This is called two-part coding, we encode the parameters of a
model first, and then the data given the parameters. For some
parametrized model Lθ, we can choose any code for θ to make
it complete. We will call the set of all such complete codes the
two-part codes on Lθ.

Which two-part code we choose is arbitrary. We may be able
to reject the uniform code for one choice of LN, or several, but
how can we prove that Lcomplete will be rejected whatever LN we
choose? Instead of choosing an arbitrary code for the size, we
can instead use the bound B(G) = Luniform

n(G) (G) as our null model.
This is not a code, but it is a lower bound for any two-part code
on Luniform

n . If Lclique(G) is shorter than B(G), it is also shorter
than Lcomplete(G) for any choice of LN.2

Contrast this with the traditional approach, where we would
define a statistic on G, like the size of the largest clique, and
compare the observed value of the statistic with the expectation
under the null model. In this case the models would have to
be rejected with separate tests. If a large clique is unlikely in a
sample from puniform

n , we have no guarantee that it will also be
unlikely in a sample from pcomplete.

2In probabilistic terms, the code on the parameter corresponds to a prior on
the parameter. The two-part codes correspond to maximum likelihood posterior
probabilities: p(θ̂)p(x | θ̂). Our bound corresponds to the maximal likelihood
of the data: p(x | θ̂). This shows us that the bound applies not only to the
two-part codes, but also to the full mixture:

∑
θ p(x | θ)p(θ) 6

∑
θ p(x |

θ̂)p(θ) = p(x | θ̂)

80 COMPRESSION FOR NETWORK MOTIF RELEVANCE

Note that when we store the rest of the graph within Lclique

we cannot use B(G) in place of Lcomplete(G). We want a conserva-
tive hypothesis test: the probability of rejecting a true null model
may be lower than α but never higher. By this principle, bounds
chosen in place of a model should always decrease D. The code
corresponding to the null-model must always be lowerbounded,
and the code for the alternative model must always be upper-
bounded. Thus when we re-use the null model inside the alter-
native model, we must always use a complete code.

5.3 Encoding with motifs

Let S = 〈S1, . . . ,Sk〉 be an ordered set of nodes from NG. The
induced subgraph I(S,G) is a graph G ′ with k nodes, containing a
link (i, j) if and only if G has a link (Si,Sj). That is, the induced
subgraph extracts all links existing between members of S.

Assume that we are given a graph G, a potential motif G ′,
and a list Mraw = 〈M1, . . . ,Mk〉 of instances of G ′ in G. That is,
each sequence M ∈ Mraw consists of nodes in NG, such that the
induced subgraph I(M,G) is equal to G ′. Sequences in Mraw may
overlap, i.e. two instances may share one or more nodes. We are
also provided with a generic graph code Lbase(G) on the simple
graphs.

The basic principle behind our code is illustrated in Fig. 5.1:
we want to store the motif only once, remove as many instances
of the motif from the data as we can, and replace them with
references to the stored motif. The two graphs combined contain
enough information to recover the data, but we have only had to
describe the motif once. Algorithm 1 on page 97 describes the
exact process.

The first thing we need for this scheme is a subset M of Mraw

such that the instances contained within it do not overlap: ie for
each Ma and Mb in M, we have Ma ∩Mb = ∅. Selecting the
subset that would give us optimal compression is NP-Hard (as
the set cover problem is reducible to it), so we must make do
with an approximation. As we will see later, the most important
factor is the number of links an instance has to nodes outside the
instance. We call this the exdegree.3 In order to find a subset

3Unlike the in- and outdegree the exdegree is not a property of a node, but

5.3 Encoding with motifs 81

the data G the subgraph G’ the template graph H

4

11

3

3
3

1 1
4
4

3
3 4

4

4 3

1

2

3 4

Figure 5.1: An illustration of the motif code. We store G ′ once,
and remove its instances from G, replacing them with a sin-
gle, special node. The links to special nodes are annotated with
‘rewiring’ information, which tells us how to rewire the subgraph
back into H. Storing only H and G ′ is enough to reconstruct the
data.

of instances with low exdegree, we first sort Mraw by exdegree
in ascending order. We then remove the first M, add it to our
subset M and remove all other instances that overlap with it.
We continue removing the first remaining instance until Mraw is
empty.

In the following, we will often need to store a sequence of
integers. We will store all such sequences using the code corre-
sponding to a Dirichlet-Multinomial (DM) distribution. Let S be a
sequence of length k of elements in alphabet Σ. Conceptually, the
DM distribution models the following sampling process: we sam-
ple a probability vector p on [0, |Σ|] from a Dirichlet distribution
with parameter vector α, and then sample k symbols from the
categorical distribution represented by p. The probability mass
function corresponding to this process can be expressed as:

pDirM
α (S | k,Σ) =

∏
i∈[1,k]

DirMα(Si | S1:i−1)

pDirM
α (Si | S

′,k,Σ) =
f(Si,S ′) + αi
|S ′|+

∑
i αi

where f(x,X) denotes the frequency of x in X. We use αi = 1/2

of a subgraph.

82 COMPRESSION FOR NETWORK MOTIF RELEVANCE

for all i. Let LDirM
k,Σ (S) = − logpDirM(S | k,Σ). Note that this code

is parametrized with k and Σ. If these cannot be deduced from
earlier parts of the code, they need to be encoded separately.
Often, we will have Σ = [0,nmax], and we only need to encode
nmax.

We also require a self delimiting code to represent natural
numbers. We will use the code corresponding to the probabil-
ity distribution pN(n) = 1/(n(n+ 1)), and denote it LN(n).

We can now describe how each part of the graph is encoded:
subgraph First, we store the subgraph G ′ using Lbase(G ′) bits.
template We then create the template graph H by removing the

nodes of each instance M ∈ M, except for the first, which
becomes a specially marked node, called an instance node.
The internal links of M—those incident to two nodes both
in M—are removed from the graph. Any link connecting
a node outside of M to a node inside of M is kept, and
rewired to the instance node.

instance nodes Lbase does not record which nodes of H are in-
stance nodes, so we must record this separately. There are(
n(G)
|M|

)
possibilities, so we can encode this information in

log
(
n(g)
|M|

)
bits.

rewiring For each side of a link in H incident to an instance
node, we need to know which node in the motif it origi-
nally connected to. Let there be some agreed-upon order
in which to enumerate the links of any given graph. Given
this order, we only need to encode the sequence W of in-
tegers wi ∈ [1, . . . ,n(G ′)]. We do so using the DM model
described above. The maximum symbol and length of W
can be deduced from parts already encoded. Note that this
code is invariant to the ordering of W, so the particulars of
the canonical node ordering do not need to be specified.

multiple edges Since Lbase can only encode simple graphs, we
cannot use it to store H directly, since collapsing the in-
stances into single nodes may have created multiple edges.
In this case we remove all multiple edges and encode them
separately. We assume a canonical ordering over the links
and record for each link incident to an instance node, how
many copies of it were removed. This gives us a sequence

5.3 Encoding with motifs 83

R of natural numbers Ri ∈ [0, rmax] which we store by first
recording the maximum value in LN(max(R)) bits, and then
recording R with the DM model.

insertions Finally, whileH andG ′ give us enough information to
recover a graph isomorphic to G, we cannot yet reconstruct
where each node of a motif instance belongs in the node
ordering of G. Note that the first node in the instance be-
came the instance node, so we only need to record where
to insert the rest of the nodes of the motif. This means
that we perform |M|(n(G ′) − 1) such insertions. Each in-
sertion requires log(t + 1) bits to describe, where t is the
size of the graph before the insertion. Let H be the tem-
plate graph and G the complete graph, then we require∑n(G)−1
t=n(H) log(t+1) = log(n(G)!)−log(n(H)!) bits to record

the correct insertions.

search Since our code accepts any list of motif instances, we
are free to take the list M and prune it further, before passing it
to the motif code, effectively discounting instances of the motif.
This can often improve compression, as storing the rewiring in-
formation for instances with high exdegrees may cost more than
we gain from removing them from the graph. We will sort M

by exdegree and search for the value c for which compressing
the graph with only the first c elements of M gives the lowest
codelength.

The codelength Lmotif as a function of c is roughly unimodal,
which means that a ternary search should give us a good value of
cwhile reducing the number of times we have to compute the full
codelength. We use a Fibonacci search [53], an elegant variation
on ternary search, requiring only one sample per recursion. Note
that c is not a parameter of the model, so we do not need to store
it separately.

implementation The template part of the code can be time
and memory intensive for large graphs, as it involves creating a
copy of the data. For any given Lbase, we can create a specific im-
plementation which computes the codelength required for stor-
ing the template graph without constructing H explicitly. This

84 COMPRESSION FOR NETWORK MOTIF RELEVANCE

will speed up the computation of the code at the expense of cre-
ating a new implementation for each new null-model. We use
such specific implementations for our three null-models.

5.4 Null models

We will define three null-models. For each model we follow the
same pattern, we first describe a parametrized model (which
does not represent a code on all graphs). We then use this to
derive a bound as described in the second section, so that we can
reject a set of null models, and finally we describe how to turn
the parametrized model into a complete model to store graphs
within the motif code.

Specifically, let Lname
θ (G) be a parametrized model with param-

eter θ. Let θ̂(G) be the value of θ that minimizes Lname
θ (G) (the

maximum likelihood parameter). From this we derive a bound
Bname(G) from this—usually using Bname(G) = Lname

θ̂(G)
(G)—which

we will use in place of a null-model. Finally, we create the com-
plete model by two-part coding: Lname(G) = Lθ(θ̂(G))+Lname

θ̂(G)
(G).

5.4.1 The Erdős-Renyi model

The Erdős-Renyi (ER) model is probably the best known proba-
bility distribution on graphs [76, 43]. It takes a number of nodes
n and a number of linksm as parameters, and assigns equal prob-
ability to all graphs with these attributes, and zero probability to
all others. This gives us

LER
n,m(G) = log

(
(n2 − n)/2

m

)
for undirected graphs, and

LER
n,m(G) = log

(
n2 − n

m

)
for directed graphs. We use the bound BER(G) = LER

n(G),m(G)(G).
For a complete code on simple graphs, we encode n with LN.

For m we know that the value is at most mmax = (n2 − n)/2 in
the undirected case, and at most mmax = n2 − n in the directed
case, and we can encode such a value in logmmax bits:

LER(G) = LN(n(G)) + logmmax + L
ER
n(G),m(G)(G) .

5.4 Null models 85

5.4.2 The degree-sequence model

The most common null-model in motif analysis is the degree-
sequence model (also known as the configuration model [73]). For
undirected graphs, we define the degree sequence of graph G as
the sequence D(G) of length n(G) such that Di is the number
of links incident to node node i in G. For directed graphs, the
degree sequence is a pair of such sequences D(G) = (Din,Dout),
such that Din

i is the number of incoming links of node i, and Dout
i

is the number of outgoing links.

The parametrized model LDS
D (G) The degree-sequence model

LDS
D (G) takes a degree sequence D as a parameter and assigns

equal probability to all graphs with that degree sequence. As-
suming that G matches the degree sequence, we have LDS

D (G) =

log |GD| where GD is the set of simple graphs with degree se-
quence D. There is no known efficient way to compute this value
for either directed or undirected graphs, but various estimation
procedures exist. We use an importance sampling algorithm dis-
covered independently by [22] and [42].4 This algorithm is guar-
anteed to produce any graph matching D with some nonzero
probability. Crucially, the algorithm does not backtrack or reject
candidates, which means that if we multiply the probability of
each random choice made in sampling, we get the probability of
the sample under our sampling procedure. That is, the algorithm
produces, along with a sample G ∈ GD, the probability qD(G) of
the algorithm producing G. While the samples are not uniform,
we do have:

E

[
1

qD(G)

]
= |GD| (5.1)

where G is a random variable representing a sample from the
algorithm. Thus, we can sample a number of graphs and take the
mean of their inverse probability under qD to estimate pDS

D (G).
This is a form of importance sampling.

This approach was taken in [22]: the sample mean
1/n
∑
i 1/qD(Gi) was used as an estimator for the expectation

in (5.1). However, as shown in [42], the distribution of 1/qD(G)
tends to be very close to log-normal. This means that the sam-

86 COMPRESSION FOR NETWORK MOTIF RELEVANCE

ple mean will converge very slowly to the correct value. Specif-
ically, the standard deviation of this estimate after n samples is

1√
n

√
(eσ2 − 1)e2µ+σ2 , which for a distribution with µ = 200 and

σ = 10, leads to a standard deviation of approximately 1√
n
e300.

For this reason, we use the maximum-likelihood estimator for
the log-normal distribution instead. Let Qi = 1/qD(Gi). We
assume Qi is log-normally distributed, so that Yi = logQi is nor-
mally distributed. Let Y = n−1∑

i Yi and SY = 1/n
∑
i(Y − Yi)

2;
then the maximum-likelihood estimator of EQ is exp

(
Y + 1

2SY
)
.

Thus, the codelength under the degree sequence model can be
estimated as

(
Y + 1

2SY
)

log2(e).
Unfortunately, even with the highly optimized implementa-

tions described in [42] and [54] sampling can be slow for large
graphs. Luckily, we are only interested in an estimate of the code-
length accurate to around the level of single bits, which means
that we only need to sample until we have a rough estimate of
the order of magnitude of |GD|. For instance, if we accept a mar-
gin of error of only 15 bits (of the potentially 106 bits required
to store a medium-sized graph), we can underestimate the num-
ber of graphs by 4 orders of magnitude and still end up within
the margin. All we need is a reliable confidence interval for our
estimate, so that we can choose a suitably conservative bound.
Our method of obtaining such a confidence interval is described
in the appendix. In all cases, we use a one-sided confidence in-
terval: when computing the codelength under the null model, we
use a lower bound for the true value, and when computing the
codelength for the motif code, we use an upper bound. Thus, the
difference in codelength is a lower bound for the true value.

The bound BDS(G) To get a bound for all two-part codes on
LDS
D , we could use B ′(G) = LDS

D(G)(G). Beating such a bound
would tell us that no property of the degree sequence could ex-
plain the motif we had found. Unfortunately, the degree se-
quence forms a large part of the code, and a lot of evidence is

4Specifically, our implementation uses the algorithms described in [42] and
[54]. However the non-uniform sampling from the candidate set, discussed in
[22, p10, step 5] is crucial to achieving a low variance in the sampling distribu-
tion, and thus a fast convergence.

5.4 Null models 87

required to compress better than B ′(G) with a complete code.
Instead, we make the assumption that the degrees are sam-

pled independently from a single distribution pdeg(n) on the the
natural numbers. This corresponds to a code

∑
Di∈D L

deg(Di)

on the entire degree sequence. Let f(s,D) be the frequency of
symbol s in sequence D. It can be shown that

Bdeg(D) = −
∑
Di∈D

log
f(Di,D)

|D|

is a lower bound for any such code on the degree sequence. This
gives us the bound BDS(G) = Bdeg(D(G))) + LDS

D(G)(G). For di-
rected graphs, we use BDS(G) = Bdeg(Din(G)))+Bdeg(Dout(G)))+

LDS
D(G)(G).

The complete model LDS(G) For the alternative model we need
a complete code. First, we store n(G) with LN. We then store the
maximum degree and encode the degree sequence with the DM
model. For undirected graphs we get:

LDS(G) = LN(n(G))+LN(max(D))+LDirM
n(G),max(D)(D)+LDS

D(G)(G)

and for directed graphs

LDS(G) =LN(n(G))

+LN(max(Din)) + LDirM
n(G),max(Din)(D

in)

+LN(max(Dout)) + LDirM
n(G),max(Dout)(D

out) + LDS
D(G)(G) .

Note that in the computation of Lmotif with LDS as a base model,
we estimate |GD| for both the template graph and the motif. It
is important to combine the confidence intervals over these two
estimates carefully, so that we end up with a correct confidence
interval over the total codelength. This is discussed in the sup-
porting materials. For Lmotif, we compute a one-sided confidence
interval to get an upperbound, so that with 95% confidence we
are overestimating the size of the motif code.

88 COMPRESSION FOR NETWORK MOTIF RELEVANCE

5.4.3 The edgelist model

While estimating |GD| can be costly, we can compute an upper
bound efficiently. Assume that we have a directed graph G with
n nodes, m links and a pair of degree sequences D = (Din,Dout).
To describe G, we might write down the links as a pair (F, T) of
sequences of nodes: with Fi the node from which link i origi-
nates, and Ti the node to which it points. Let SD be the set of all
pairs of such sequences satisfying D. We have

(
m

Din
1 ,...,Din

n

)
possibil-

ities for the first sequence, and
(

m
Dout

1 ,...,Dout
n

)
for the second. This

gives us |SD| =
(

m
Din

1 ,...,Din
n

)(
m

Dout
1 ,...,Dout

n

)
= m!m!/

∏n
i=1D

in
i !Dout

i !.
We have |SD| > |GD| for two reasons. First, many of the graphs
represented by such a sequence pair contain multiple links and
self-loops, which means they are not in GD. Second, the link or-
der is arbitrary: we can interchange any two different links, and
we would get a different pair of sequences, representing the same
graph, so that for a graph with no multiple edges, there are m!
different sequence-pairs to represent them.

To refine this upper bound, let S ′D ⊂ SD be the set of sequence
pairs representing simple graphs. As all links in such graphs are
distinct, we have |GD| = |S ′D|/m!. Since |S ′D| 6 |SD|, we have 5

|GD| 6
m!∏n

i=1D
in
i !Dout

i !
.

In the undirected case, we can imagine a single, long list of nodes
of length 2m. We construct a graph from this by connecting the
node at index i in this list to the node at index m + i for all
i ∈ [1,m]. In this list, node a should occur Da times. We define
SD as the set of all lists such that the resulting graph satisfies
D. There are

(
(2m)!
D1,...,Dn

)
such lists. We now have an additional

reason why |SD| > |GD|: each pair of nodes describing a link can
be swapped around to give us the exact same graph. This gives
us:

|GD| 6 |S ′D|/(2
mm!) =

(2m)!
2mm!

∏n
i=1Di!

.

In both cases, the fact that we have an upperbound gives us a

5This value was previously used in [21] as a precise value for the number of
graphs with multiple edges. This is incorrect, as we can only divide by m! if we
know that no graphs have multiple edges.

5.5 Experiments 89

code: while the code as described assigns some probability mass
to non-simple graphs, we can easily assume that this is assigned
instead to some null-element, since we are only interested in the
codelengths and probabilities of simple graphs. This gives us the
following parametrized code for directed graphs:

LEL
D (G) = logm! −

n∑
i=0

logDin
i ! −

n∑
i=0

logDout
i !

where (Din,Dout) are the degree sequences of G, and for the
undirected case:

LEL
D (G) = log(2m)! − logm! −m−

n∑
i=0

logDi! .

For the bound and the complete model, we follow the same strat-
egy we used for the previous model. For undirected graphs:

BEL(G) = Bdeg(G) + LEL
D(G)(G) , and

LEL(G) = LN(n(G))+LN(max(D))+LDirM
n(G),max(D)(D)+LEL

D(G)(G) .

And for directed graphs:

LEL(G) =LN(n(G))

+ LN(max(Din)) + LDirM
n(G),max(Din)(D

in)

+ LN(max(Dout)) + LDirM
n(G),max(Dout)(D

out) + LEL
D(G)(G) .

5.5 Experiments

To validate and illustrate our method, we will perform three ex-
periments. First, we will construct a graph by injecting instances
of a single motif into a random network. The method should
recover only this motif as significant. Second, we will run the
method on datasets from four different domains, and show the
results for the most frequent subgraphs, using the three null-
models we have described. Finally, to show the scalability of the
model with fast null models, we will run the analysis on a large
graph.

90 COMPRESSION FOR NETWORK MOTIF RELEVANCE

In all experiments we search for motifs by sampling, based
on the method described in [52]. Note that we have no partic-
ular need for a sampling algorithm which provides an accurate
approximation of the actual frequencies present in the graph, so
long as it can provide us with a large selection of non-overlapping
instances with low exdegree. For this reason we adapt the algo-
rithm to improve its speed: we start with an empty selection of
nodes N ′, and add a random node drawn uniformly from NG.
We then add to N ′ a random neighbour of a random member
of N ′, and repeat this action until N ′ has the required size. We
then extract and return I(N ′,G). In the case of a directed graph,
nodes reachable by incoming and outgoing links are both consid-
ered neighbours.

The size n(G ′) of the subgraph is chosen before each sample
from a uniform distribution over the interval [nmin,nmax]. Where
nmin and nmax are parameters of the experiment.

We re-order the nodes of the extracted graph to a canonical or-
dering for its isomorphism class, using the Nauty algorithm [66].
We maintain a map from each subgraph in canonical form to a list
of instances found for the subgraph. After sampling is completed,
we end up with a set of potential motifs and a list of instances for
each, to pass to the motif code described in Section 5.3.

In all experiments we report the log-factor:

Bnull(G) − Lmotif(G;G ′,M,Lnull) .

That is, we use the bound in place of the null model, and the com-
plete code of the same null model is passed to the motif code. If
the log-factor is larger than 10 bits, we can interpret it, as de-
scribed in the Section 5.3, as a successful significance test, al-
lowing us to reject the null model at α = 0.001. In all cases,
a negative log-factor means that we do not have sufficient evi-
dence to reject the null-model, but a different experiment might
yet achieve a positive log-factor. This could be achieved by sam-
pling more subgraphs, using a different algorithm to find motif
instances or taking more samples from the degree-sequence esti-
mator.

Note that we do not correct for multiple testing, since this is

5.5 Experiments 91

purely an exploratory analysis and such corrections would not
affect the relative ordering of the motifs. Nevertheless, it is im-
portant to bear this in mind when interpreting the log-factors.

5.5.1 Recovering motifs in synthetic data

We use the following procedure to sample an undirected graph
with 5000 nodes and 10000 links, containing ni injected in-
stances of a particular motif G ′ with n ′ nodes and m ′ links:

1. Let n = 5000 − (n ′ − 1)ni and m = 10000 − m ′ni and
sample a graph H from the uniform distribution over all
graphs with n nodes and m links.

2. Label ni random nodes, with degree 5 or less, as instance
nodes.

3. Let pcat be a categorical distribution on {1, . . . , 5}, chosen
randomly from the uniform distribution over all such dis-
tributions.

4. Label every connection between an instance node and a
link with a random value from pcat. Links incident to two
instance nodes, will thus get two values.

5. Reconstruct the graph G from G ′ and H.

This is roughly similar to sampling from our motif code. In this
graph, G ′ should be the only significant motif, with the exception
of motifs that can be explained from the prevalence of G ′, i.e.
subgraphs and supergraphs of G ′, or graphs that contain part of
G ′. However, these should have a markedly lower log-factor than
G ′. For our experiment, we will only extract subgraphs of size 5,
to rule out the first two cases.

On this sampled graph, we run our motif analysis. We run
the experiment multiple times, with ni = 0, ni = 10 and ni =
100, using the same subgraph G ′ over all runs, but sampling
a different H each time. For each value of ni, we repeat the
experiment 10 times. Per run we sample 5000 motifs. This value
is chosen to show that even a very low sample size is sufficient to
recover the motif. The null-model in all cases is the ER model, as
that corresponds to the source of the data.

92 COMPRESSION FOR NETWORK MOTIF RELEVANCE

Fig. 5.2 shows the results for the 21 possible connected simple
graphs of size 5. As expected, when we insert no subgraphs,
the motif model cannot compress the graph better than the null
model, for any motifs, since the source of the data is the null-
model. There are motifs with very high frequencies (shown on
the right), much higher than the frequencies of our motif, but
these can be explained as a consequence of the null model and
have a negative log-factor. We can also see that once we insert
100 instances of the motif, two other subgraphs become motifs:
in both cases, these share a part of the inserted motif (a rectangle
and a triangle). This is an important lesson for motif analysis: not
every motif represents a meaningful result, some motifs may be
a byproduct of other motifs.

5.5.2 Various datasets and null-models

Next, we show how our our approach operates on a selection of
datasets across domains. We use the following datasets:
kingjames (undirected, n = 1773,m = 9131) Co-occurrences

of nouns in the text of the King James bible [2, 1]. Nodes
represent nouns (places and names) and links represent
whether these occur together in one or more verses.

yeast (undirected, n = 1528,m = 2844) A network of the pro-
tein interactions in yeast, based on a literature review [75].
Nodes are proteins, and links are reported interactions be-
tween proteins. We removed 81 self-loops.

physicians (directed, n = 241,m = 1098) Nodes are physici-
ans in Illinois [5, 28]. Links indicate that one physician
turns to the other for advice.

citations (directed, n = 1769,m = 4222) The arXiv citation
network in the category of theoretical astrophysics, as cre-
ated for the 2003 KDD Cup [39]. To create a workable
graph, we follow the procedure outlined in [24]: we in-
clude only papers published before 1994, remove citations
to papers published after the citing paper, and select the
largest connected component.

All datasets are simple (no multiple edges, no self-loops). In each
case we take 5 · 106 samples with nmin = 2 and nmax = 6. We
test the 100 motifs with the highest number of instances (after

5.5 Experiments 93

overlap removal), and report the log-factor for each null model.
For the edgelist and ER models we use a Fibonacci search at
full depth, for the degree-sequence model we restrict the search
depth to 3. For the degree-sequence estimator, we use 40 sam-
ples and α = 0.05 to determine our confidence interval. We use
the same set of instances for each null-model.

Our first observation is that for the physicians dataset, there
are no motifs under the degree-sequence null-model. We have
found this to be a common property of many social networks.
Whether this indicates that social networks are simpler, more
random, or perhaps even well-modeled by the degree sequence
model, requires further investigation. We may be tempted to
draw the conclusion that directed networks contain fewer mo-
tifs in general for these null models, or that fewer motifs can be
found in directed networks with this method, but the experiment
in the next section shows that this is not the case.

In both the kingjames and the yeast graphs, many motifs
contain cliques or near-cliques. This suggests that the data con-
tains local communities of highly connected nodes which the null
model cannot explain.

We also observe a degree of agreement between the degree se-
quence model and the edgelist model, suggesting that the edge-
list model may be an acceptable proxy for the degree sequence
model.

These analyses were run on a single machine with 8 Giga-
byte of java heapspace6 and 2 1.80 Ghz Intel Xeon processors
(E5-2650L). For the kingjames dataset the time taken was, on
average, 23 minutes and 34 seconds per motif. For the yeast

dataset, 3 minutes and 8 seconds per motif. For the physicians

dataset, 35 seconds per motif and for the citations dataset 9
minutes and 25 seconds per motif. In all these experiments the
degree-sequence model took by far the most time. The next sec-
tion shows the possibilities if this model is not considered.

The sampling from the degree-sequence estimator was done
in parallel, taking advantage of the 16 cores available in total.
All other code was single-threaded.

6This was the system default. The amount of memory used was not mea-
sured.

94 COMPRESSION FOR NETWORK MOTIF RELEVANCE

5.5.3 Large-scale motif extraction

In the experiments above, the computation of LDS
D was by far the

greatest bottleneck. In order to test the scalability of the method
for null-models which can be computed efficiently, we omit the
degree-sequence null model. This allows us to perform motif de-
tection on much larger graphs. We use the hyperlink graph of the
Dutch Wikipedia [6, 74] as a benchmark. This dataset contains
all links that existed at some point between any two articles of
the Dutch Wikipedia. We removed self loops and multiple edges,
resulting in a network of 1 039 253 nodes and 13 485 902 links.
We sampled 5 · 106 subgraphs of sizes from 2 to 6 nodes. We
selected the 100 motifs with the greatest number of instances
(after overlap removal) and computed their log-factor under the
ER and edgelist models. The top 30 are shown in Fig. 5.7. We
used the Fibonacci search at full depth for both models.

The analysis was executed using 3.5 gigabytes of Java heap-
space, on a machine with 2 1.80 Ghz Intel Xeon processors (E5-
2650L). It took 5 hours and 27 minutes to complete. Sampling
of subgraphs took 9 minutes, overlap removal took 14 minutes
and the compression analysis took, on average, 3 minutes and 2
seconds per motif (for 100 motifs analyzed).

Note that all code in this analysis was single-threaded, so the
availability of multiple cores and multiple processors was not ex-
ploited. While it is a simple matter to run the computation of
the log-factors in parallel, with a thread for each motif, a single-
threaded run shows that the experiment can also be run on com-
modity hardware, in reasonable time.

5.6 Conclusion

We have introduced a new method of testing motif relevance,
which allows motif analysis to be scaled up to graphs with mil-
lions of nodes, even on commodity hardware.

One observation from our experiments deserves further men-
tion: in the first experiment, we saw that injection of one sub-
graph into a network caused other subgraphs to become motifs,
i.e. their frequencies became statistically significant. This tells
us that even if some motifs represent functional units of a net-

5.6 Conclusion 95

work, as is often claimed (and contested) [67, 56], the fact that
a subgraph occurs with statistically significant regularity cannot
be taken as proof that it is a functional unit. Hypothesis testing
allows one to make a binary decision, but that decision is always
about the null-model. A low p-value should not be interpreted as
evidence for the meaning of the subgraph. In fact, at this level of
abstraction, the best any method can do is to offer sound candi-
dates for functional units.

The proof that a particular motif actually corresponds to a
meaningful unit can only be achieved in context: that is, a do-
main expert should evaluate the list of instances found for a par-
ticular motif, to see whether a large subset of them perform the
same role in the network, or if not, what other reason can be
found for the prevalence of the motif. In other words, motif anal-
ysis is necessarily an exploratory technique, and while a signifi-
cance test provides a good heuristic to separate trivially frequent
subgraphs from subgraphs which may represent important prop-
erties, it is ultimately just a heuristic. The only thing it proves is
the incorrectness of the null-model.

The reader may note that while we have shown that our me-
thod is fast in principle, if we wish to use the degree-sequence
model, we are still limited to medium-scale graphs, and long
processing times. There are several potential ways around this
problem. First, the codelength for the whole graph is not specific
to motif analysis. It only needs to be computed once for each G,
after which it can be re-used in any MDL or Bayesian analysis (for
motifs, cliques, clustering, etc.) Second, while we have chosen to
use the null model also inside the motif model, this is not the
only approach. We could also use the edgelist model in the motif
code: since the edgelist code upperbounds the degree-sequence
code, any positive log-factor in this setting means we would also
get a positive log-factor if we used the degree-sequence model to
store the motif and the template graph. There may also be effi-
cient lowerbounds for the degree-sequence model, which we can
use in its place for the null model. 7

Our current model does not allow the detection of anti-motifs.

7[18] provides a lowerbound, but it cannot be computed much faster than
the estimators used in our experiments. It may, however, be easier to parallelize.

96 COMPRESSION FOR NETWORK MOTIF RELEVANCE

For that purpose, another model would be required; one which
exploits the property that a subgraph has a lower frequency than
expected to compress the data. In theory, this is certainly possi-
ble: any such non-randomness can be exploited for the purposes
of compression. We leave this as a matter for future research.

Finally, we hope that our approach is illustrative of the general
benefit of MDL techniques in the analysis of complex graphs. In
conventional graph analysis a researcher often starts with a struc-
tural property that is observed in a graph, and then attempts to
construct a process which generates graphs with that structural
property. A case in point is the property of scale-freeness and the
preferential attachment process that was introduced to explain it
[9]. The Kraft inequality allows us instead to build models based
on a description method for graphs. The trick then becomes to
find a code that describes such graphs with the desired property
efficiently, instead of finding a process that is likely to generate
graphs with the desired property. For many properties, such as
cliques, motifs or specific degree sequences, such a code readily
suggests itself.

5.6 Conclusion 97

Algorithm 1 The motif code Lmotif(G;G ′,M,Lbase). Note that the
nodes of the graph are integers.
Given:

a graph G, a subgraph G ′,
a list M of instances of G ′ in G, a code Lbase on the simple

graphs.

bsubgraph ← Lbase(G ′) subgraph

replace each instance with a single node
H← copy(G), W = [] template
for each M = {m1, . . .mn(G′)} in M ′:

We use m1 (the m1-th node in G) as the instance node
for each link l between a node nout not in M and a node mj

in M:
if j 6= 1: add a link between nout and mj
W.append(j)

remove all nodes mi except m1, and all incident links
brewiring ← LDirM

|W|,n(G′)(W) rewiring

#Remove multiple edges from H and record the duplicates in
R

R,H ′ ← simple(H)
btemplate ← Lbase(H ′)

bmulti-edges ← LN(max(R)) + LDirM
|R|,max(R)(R) multiple edges

binstances ← log
(
n(G)
|M′|

)
instance nodes

binsertions ← log(n(G)!) − log(n(H)!) insertions

return bsubgraph+btemplate+brewiring+bmulti-edges+binstances+binsertions

98 COMPRESSION FOR NETWORK MOTIF RELEVANCE

Fi
gu

re
5.

2:
Th

e
re

su
lt

s
of

th
e

ex
pe

ri
m

en
t

on
sy

nt
he

ti
c

da
ta

.
Th

e
bo

tt
om

ro
w

sh
ow

s
al

l
21

si
m

pl
e

co
nn

ec
te

d
gr

ap
hs

w
it

h
5

no
de

s
(u

p
to

is
om

or
ph

is
m

).
Th

e
m

id
dl

e
ro

w
sh

ow
s

th
e

nu
m

be
r

of
no

n-
ov

er
la

pp
in

g
in

st
an

ce
s

fo
un

d
by

th
e

sa
m

pl
in

g
al

go
ri

th
m

fo
r
n
i
=

0,
n
i
=

10
an

d
n
i
=

10
0

fr
om

le
ft

to
ri

gh
t,

fo
r

ea
ch

m
ot

if.
Th

e
ba

rs
sh

ow
th

e
av

er
ag

e
va

lu
e

ov
er

10
ra

nd
om

ly
sa

m
pl

ed
gr

ap
hs

,w
it

h
th

e
sa

m
e

su
bg

ra
ph

(s
ho

w
n

on
th

e
fa

r
le

ft
)

in
je

ct
ed

ea
ch

ti
m

e.
Th

e
to

p
ro

w
sh

ow
s

th
e

di
ff

er
en

ce
be

tw
ee

n
th

e
co

de
le

ng
th

un
de

r
th

e
nu

ll
m

od
el

(t
he

ER
m

od
el

)
an

d
un

de
r

th
e

m
ot

if
co

de
.

Th
e

er
ro

r
ba

rs
re

pr
es

en
t

th
e

ra
ng

e,
i.e

.
th

ey
ar

e
dr

aw
n

fr
om

th
e

sm
al

le
st

to
th

e
la

rg
es

t
ob

se
rv

at
io

n.

5.6 Conclusion 99

Fi
gu

re
5.

3:
Th

e
re

su
lt

s
of

th
e

m
ot

if
ex

tr
ac

ti
on

on
th

e
k
i
n
g
j
a
m
e
s

ne
tw

or
k.

100 COMPRESSION FOR NETWORK MOTIF RELEVANCE

Fi
gu

re
5.

4:
Th

e
re

su
lt

s
of

th
e

m
ot

if
ex

tr
ac

ti
on

on
th

e
y
e
a
s
t

ne
tw

or
k.

5.6 Conclusion 101

Fi
gu

re
5.

5:
Th

e
re

su
lt

s
of

th
e

m
ot

if
ex

tr
ac

ti
on

on
th

e
p
h
y
s
i
c
i
a
n
s

ne
tw

or
k.

102 COMPRESSION FOR NETWORK MOTIF RELEVANCE

Fi
gu

re
5.

6:
Th

e
re

su
lt

s
of

th
e

m
ot

if
ex

tr
ac

ti
on

on
th

e
c
i
t
a
t
i
o
n

ne
tw

or
k.

5.6 Conclusion 103

Fi
gu

re
5.

7:
Th

e
re

su
lt

s
of

th
e

m
ot

if
ex

tr
ac

ti
on

on
a

la
rg

e-
sc

al
e

ne
tw

or
k.

W
e

sh
ow

th
e

th
ir

ty
m

ot
if

s
w

it
h

th
e

hi
gh

es
t

lo
g-

fa
ct

or
un

de
r

th
e

EL
m

od
el

.

6 · AN EM ALGORITHM FOR THE FRACTAL

INVERSE PROBLEM

The material in this chapter is based on the paper An EM-algorithm
for the fractal inverse problem, P. Bloem, S. de Rooij. To be sub-
mitted to Physical Review Letters.

In the previous chapters, we saw that often, the easiest data to
work with is data that consists of independent, identically dis-
tributed samples. Such data is made up of chunks of equal length,
drawn from the same distribution independently. We can view
this as a kind of symmetry under translation. Slide the bit string a
fixed number of bits to the left or right, and the distribution over
the part we’re looking at remains invariant.
As we saw, this kind of symmetry is difficult to find in graphs.
There is, however, another kind of symmetry in graph data: sym-
metry under re-scaling, also known as self-similarity: if we “zoom
in” on the data in the correct way, looking at only a small part,
this small part resembles the whole. This principle is commonly
used implicitly: no researcher actually has access to the entire
web-graph, for instance. They use a subgraph, extracted by crawl-
ing links on the web. Thus, they make the implicit assumption
that conclusions drawn on the basis of this subgraph also hold
for the whole. A subgraph, sometimes much smaller than the full
graph, is assumed to be similar to the whole set.

This assumption has some interesting consequences. If the
subgraph is like the whole in every respect, is a subgraph of the
subgraph also like the subgraph, and thereby like the whole? Can
the whole dataset be split in increasingly smaller sections that are
all scaled down versions of the whole? If so, the result is a fractal.

Fractal models have been popular since the seventies, when
mathematicians and physicists began to realize that they could
explain jagged, irregular features like coastlines, clouds and trees.
Objects that had proved increasingly difficult to analyze with
classical Euclidean geometry. One problem that has always held

106 AN EM ALGORITHM FOR THE INVERSE PROBLEM

Figure 6.1: Two examples of fractals and their construction. In
both cases, we start with an initial image, we take several trans-
formed copies of this image and compose them into a new image.
Iterating the process, the information in the original image disap-
pears, and the fractal emerges. The figures on the right represent
the limit of this process: the Sierpinski triangle and the Koch
curve, respectively.

back fractal analysis, however, is the inverse problem: we know
how to draw pictures of a given fractal model, but how to recon-
struct the model given the picture?

In this chapter, we investigate the problem in the domain of
iid numerical data: we consider the problem of fitting self-similar
models to sets of points in an H-dimensional Euclidean space.
We show that the inverse problem can be efficiently solved with
Expectation-Maximization (EM) methods.

6.1 Fractals

Fractals are a class of mathematical objects, specifically sets or
probability distributions. The word fractal is not precisely de-
fined,1 but the following properties are common to most exam-
ples. First, there is self similarity: a part is a scaled down copy of
the whole. See for instance the Sierpinski triangle (Figure 6.1). It
consists of three triangular shapes which are scaled down copies
of itself. Second, most fractals have infinitely fine structure.
‘Zooming in’ reveals ever finer detail. In the case of the Sier-
pinski triangle, we will see the same shape recurring again and
again, but other fractals like the Mandelbrot set reveal a great va-
riety of shapes. Finally, there exist generalizations of the notion

6.1 Fractals 107

of dimension that can take on non-integer values. Most fractals
will have such non-integer dimensions. The Sierpinski triangle,
for example, has a Hausdorff dimension of approximately 1.58.

Since the name fractal was coined in the 1970s, fractals have
increasingly been seen as a potential model for many natural phe-
nomena. Mandelbrot put it as follows in The Fractal Geometry of
Nature [64]:

Clouds are not spheres, mountains are not cones, coast-
lines are not circles, and bark is not smooth, nor does
lightning travel in a straight line.

Fractal geometry has been used in many fields, including physics
[65], geology [26], biology [44] and economics [87].

One of the greatest problems with fractal analysis has always
been the difficulty of finding a fractal model for a given set of
data. It may be visually clear that a cloud or a coastline ‘looks’
fractal, and we may be able to determine that it has a non-integer
dimension [86], but how do we get from a dataset to a model?
How do we determine the parameters of the fractal-generating
model that led to this particular image or dataset? This is called
the fractal inverse problem.

Current approaches tend to rely on evolutionary algorithms
[34, 29, 72]. Such algorithms are expensive, and it can be dif-
ficult to get them to converge to precise parameter values, even
if the dataset itself is sampled from a fractal model. Other ap-
proaches are highly domain-specific, such as fractal image com-
pression [48], which does not translate well to data of arbitrary
dimensionality. Some interesting results have been also been de-
rived from the method of moments [78] and sampling random
transformations from the data [49], but apart from the evolu-
tionary methods, we are not aware of any other generic, practical
methods.

Here, we focus on the family of Iterated Function Systems [17,
51], a broad class of fractals capturing many well-known exam-
ples. Figure 6.1 shows the basic principle: we start with some ini-
tial image and apply a small number, K, of contracting transfor-

1Mandelbrot originally defined a fractal as a set whose topological dimension
differs from its Hausdorff dimension, but later retracted this definition, stating
that he preferred the word to be not precisely defined.

108 AN EM ALGORITHM FOR THE INVERSE PROBLEM

mations to it, resulting in a second image consisting of K scaled
down copies of the initial image. We then apply the transfor-
mations again, to this second image, and so on. As we iterate
this process, the information in the initial image is lost, and the
image converges to a fractal. Which fractal emerges is entirely
determined by the chosen transformations. By fixing a family
of transformations F, we define a family of fractals, each frac-
tal determined by a small number of transformations from F, its
components.

This idea generalizes very naturally to probability distribu-
tions: we choose the components of the IFS, and instead of ap-
plying them to an initial image, we apply them to an initial distri-
bution, combining these into a mixture of scaled-down copies of
the original distribution. Thus, we can define a family of distribu-
tions on RH, where the components form the parameters of the
model. Here, we choose similitudes as our family of transforma-
tions. A similitude, also known as a rigid transformation, consists
of a translation, a rotation, and a uniform scaling. We choose
similitudes because they offer a good trade-off between expres-
siveness, and ease of optimization. Most well-known IFSs can be
described by a similitude-based IFS, and we can still solve the
optimizations in our algorithm analytically. Extensions to other
families of transformations are possible at the cost of using nu-
meric or approximate optimization instead.

We can now frame the fractal inverse problem as a problem of
statistical parameter estimation: for a set of points x ∈ RH, and
a number of components K, find a set of K similitudes, such that
the likelihood of X under the resulting IFS distribution is maxi-
mal. We use the Expectation-Maximization principle to construct
our algorithm. Briefly, we cast the sequence of components that
was responsible for a particular point as a latent variable. Opti-
mizing both the latent variables and the parameters of the model
together is intractable, but we can approximate by optimizing
the latent variables given the parameters and vice versa. Starting
with some initial model, we iterate this process, until we con-
verge to a good model.

We show in Section 6.4 that our algorithm is able to recon-
struct known fractals, such as the Sierpinski triangle and the

6.1 Fractals 109

Koch curve. We also apply the algorithm to some datasets sam-
pled from images, and some natural data of higher dimension,
showing that, while there are no IFSs to perfectly capture these
images, the self similarity in the model does often allow a better
fit than a simple mixture of MVNs.

6.1.1 Preliminaries

Measures and transformations Let {xi}i∈[1,N], xi ∈ RH be our
dataset. Let X be the N × H matrix with xi as its columns. All
vectors are column vectors.

Let 1L be the length-L vector with 1 at all indices. Such vectors
are useful tools in matrix notation: for instance, the sum of the
elements of the K × L matrix M can be expressed as 1K

T
M1L,

while its marginal vectors are (1K
T
M)T and M1L. Since the

correct length is often determined by context, we will omit the
superscripts where possible. Let ei be the vector with element i
1 and all others 0. This vector functions as a row- or column-
selector, e.g. Xei = xi.

Let v(S) be a probability distribution with S ⊆ RH. Let
ft,A(x) = Ax + t be an invertible affine transformation repre-
sented by a vector t and a matrix A. Then the transformation of
v by ft,A is defined by the relation ft,A(v)(S) = v(ft,A

−1(S)). Let
v(x) be the density function of the measure v (with respect to the
Lebesgue measure). Then the density function of the measure
ft,A(v) is ft,A(v)(x) = |A−1|v(ft,A

−1(x)).
A multivariate normal distribution (MVN) on RH is deter-

mined by a mean µ ∈ RH and a covariance matrix Σ ∈ RH×H.
Its probability density function is:

N(x;µ,Σ) = (2π)−
H
2 |Σ|−

1
2 exp

[
−

1
2

∥∥(x− µ)TΣ−1(x− µ)
∥∥2
]

We will call the MVN with µ = 0, Σ = IH the standard multivari-
ate normal distribution, or N0. A spherical MVN has Σ = sI for
some scalar s. Let x be a random variable with x ∼ N(µ,Σ), then
ft,A(x) ∼ N(t+Aµ,AΣAT).

A rotation matrix R is a matrix with RRT = I and |R| = 1.
A similitude (or rigid transformation) on RH is a transformation
defined by a rotation matrix R ∈ RH×H, a translation vector t ∈

110 AN EM ALGORITHM FOR THE INVERSE PROBLEM

RH and uniform scaling s ∈ R: ft,R,s(x) = sRx + t. The inverse
of a similitude is also a similitude: fs,R,t

−1(x) = f 1
s

,RT ,− 1
s
RT t(x).

fs,R,t(N0) is a spherical MVN with mean t and covariance s2I.
Transforming a generic spherical MVN by a similitude can be cast
as the transformation of N0 by two similitudes:

ft,R,s(Nt0,s0
2I)(x) = ft,R,s(ft0,R0,s0(N0))(x)

= (2π)−
H
2 (ss0)

−H exp
[
−

1
2s0

2s2 ‖x− (sRt0 + t)‖2
]

(6.1)

The Expectation-Maximization (EM) Algorithm [35]
Let p(X | Z, θ) be a probability distribution with parameters θ
and latent variables Z. In the most common example of the EM
algorithm, p is a mixture of MVNs: θ contains the parameters of
KMVNs together with a weightwk for each. Z is a binary matrix
whose rows zi determine which component is responsible for xi:
i.e. if component k is responsible, then Zik is 1 and all other
elements of row i are 0. The maximum likelihood parameters for
a dataset X are determined by

arg max
θ

lnp(X|θ) = arg max
θ

ln
∑
Z

p(X|Z, θ)p(Z)

where the sum is over all possible values of Z. The value in-
side the sum is the complete-data likelihood p(X,Z | θ). In the
mixture-of-MVNs example, there are KN possibilities for Z, mak-
ing this sum intractable for practical data.

The intuition behind the EM algorithm is to optimize θ with
respect to our best guess for Z and vice versa. Let θold be our
current best guess for the parameters. We first optimize p(Z |

X, θold), the posterior on the latent variables. Note that, in the
MVN example, we can represent this as an N × K matrix Z with
Zij = p(j | x, θ) = Nold

j (x)wj. These are known as the responsi-
bilities.

We then determine the expectation of the logarithmic com-
plete-data likelihood under our posterior p(Z|X, θold) as a func-

6.2 The IFS model 111

tion of θ.

Q(θ) =
∑
Z

p(Z|X, θold)p(Z) lnp(X,Z | θ) (6.2)

Note that the complete-data likelihood is now inside the loga-
rithm. We optimize this Q-function, with respect to θ:

θnew = arg max
θ

Q(θ) .

The computation of the matrix Z is know as the expectation step
and the computation of θnew is known as the maximization step.
The EM algorithm iterates the two steps until the parameters con-
verge.

6.2 The IFS model

We will define an iterated function system as follows:

Definition 6.1. An Iterated Function System of order K and di-
mension H is a pair ({fk}, {wk}) of K components fk : RH → RH

with K associated weights wk, nonnegative scalars, with∑
iwi = 1.

Here, all components are similitudes: i.e. fk is defined by a
scalar sk ∈ R, a rotation matrix Rk ∈ RH×H and a translation
vector tk ∈ RH:

fk(x) = skRkx+ tk .

The definition can be extended to functions on any kind on met-
ric spaces [51]. As noted in the introduction, similitudes provide
a good balance between expressive power, and ease of optimiza-
tion.

An IFS determines a probability distribution on RH. We can
sample from this distribution as follows. Let p0 be some initial
distribution on RH, whose support is a compact set, and let D be
some nonnegative integer. Sample x0 from p0. Sample a random
component, so that component fk has probability wk. Let x2 =

fk(x1). Continue this process until xD. xD was sampled from the
depth-D distribution defined by the IFS.

We note two important properties of IFSs. First, the distribu-

112 AN EM ALGORITHM FOR THE INVERSE PROBLEM

w

v

k = 1,...,k

ci xi

i = 1, ..., N

tksk RktpRpsp

Figure 6.2: A graphical model, illustrating the components of
the IFS model. The gray box is a plate, representing a repetition
of the nodes inside the box for each datapoint. The black node
represents the observed data.

tion on xD converges with increasing D: that is, the KL diver-
gence between successive models goes to zero with D. We call
the distribution it converges to the limit distribution. Second, the
limit distribution is independent of the choice of p0, so long as
p0 has compact support. Thus, we can take the weights and com-
ponents as parameters that determine a distribution, and we can
evaluate the IFS to high D to approximate this distribution. For
formal statements of these properties and their proofs we refer
the reader to [51].

To make the model easier to fit to natural data, which may not
be a perfect fractal, and may not be properly centered, we extend
the basic IFS model with some additional factors. This complete
model is illustrated in Figure 6.2. It consists of:
the components fk = {sk,Rk, tk} K similitudes, each determin-

ed by sk ∈ R, tk ∈ RH, Rk ∈ RH×H.
the component weights w This is a vector of K non-negative

values, summing to 1. Each value determines the mixture-
weight of its associated component in the iteration of the
IFS. That is, if p0 is the density function of the initial distri-

6.2 The IFS model 113

bution, the model after one iteration is the mixture p1(x) =∑
kwkfk(p0)(x).

the depths v Instead of assuming that all points come from the
limit distribution of the IFS, we assume that the depth to
which the model is evaluated is variable, and differs per
point. Let D be the maximum depth (a parameter of the
algorithm). v is a length-D vector on nonnegative values,
summing to 1, with vd the probability that a point is gen-
erated by the model at depth d.

The post-transformation sp,Rp, tp The parameters for a single
post-transformation. This transformation is applied once to
all sampled points.

The code ci An ordered sequence ci = 〈ci1, . . . , cid〉. Each ele-
ment of the code is an integer in [1,K] representing a com-
ponent.

The data xi This is the point after the post-transformation is ap-
plied: i.e. the observed data.

The first four items, those outside the plate in Figure 6.2, form
the parameters of the model. We will refer to these combined pa-
rameters of a single model as θ. Inside the plate are the observed
variables (the data) and the latent variables (the codes).

For the initial model, we choose the standard multivariate
Normal distribution N0, mentioned in the preliminaries. Since
each affine transformation of an MVN is itself an MVN, this makes
each iteration of our model a mixture of MVNs. Since the depth
vector v mixes these models, the whole model is also a mix-
ture of MVNs. Each MVN in this mixture is determined by a
sequence of components with length between 0 and D; its code.
We will use the notation [1,K]d to refer to the set of all length-d
codes. Let [1,K][a,b] =

⋃
d∈[a,b][1,K]d. Thus, the set of all codes

{c1, . . . , cM}, including the empty code, is [1,K][0,D]. Given a code
cj, we define the function fj : RH → RH as the composition of
the post-transform and the components indicated by the code:

fj = fp ◦ fcj1 ◦ . . . ◦ fcjd .

Using this notation, we can write the probability density function

114 AN EM ALGORITHM FOR THE INVERSE PROBLEM

of the model as follows:

p(x; θ) =
|[1,K][0,D]|∑
j=1

p(cj; θ)fj(p0)(x)

=
∑
j

v|cj|
∏
i

wcjifj(N0)(x) .

Giving the model a variable depth has several advantages. First,
it makes the model a generalization of good fall-back models:
with v0 = 1, the model becomes a spherical MVN, determined by
the post-transform. With v1 = 1, the model becomes a mixture of
K spherical MVNs.2 Since each point has its own depth, the full
model is a mixture over these two models, and the deeper IFS
models. If the data is not self-similar, or only partially self-similar,
models with high weights on the lower depths can account for
this.

The variable depth also allows the EM search a “gentle start”.
In the limit, most IFSs have a support with lower dimension than
the embedding dimension of the data: i.e. almost all of RH has
probability zero. This means that even if the model fits the source
of the data perfectly, the slightest addition of noise will make
the entire likelihood zero. It also means that a minute change
in parameters can mean the difference between the maximum
likelihood, and likelihood zero. In effect, for high values of d, the
fitness landscape becomes very jagged.

The depth parameters provide an automatic defense: if such a
drop occurs, the lower models, whose fitness landscape is smoo-
ther, automatically get a higher weight, smoothing out the fitness
landscape for the complete mixture. As the search converges to
the correct model, the model becomes more weighted towards
the higher depths.

The variable depth also creates some complications, specifi-
cally when our data is not perfectly centered. If we transform an
IFS, evaluated to depth d, by an affine transformation, the result
is also an IFS. However, the resulting components depend on d.
Imagine a dataset sampled from a Sierpinski triangle translated
away form the origin. We have good models at every depth for

6.3 The EM algorithm for IFS models 115

111

311 211

131

331 231

121

321 221

113

313 213

112

312 212

133

333 233

123

323 223

132

331 232

122

322 222

(a)

f3

f1

f1

f1

f1

f3

code: 311

code: 113

(b)

Figure 6.3: (a) Codes of length three on the Sierpinski triangle and the
subsets they code for. (b) The construction of a subset from its code.

this data, but their components are different. Only if the data
is centered do the components coincide for all depths. This is
desirable, because once the solution has converged to these com-
ponents, we will see the higher depths gaining more weight. But
how the data should be centered for the components to coincide
differs from one IFS to another. This is the reason for the post-
transform: we learn a centered IFS, and transform it to the data.

6.3 The EM algorithm for IFS models

The basic idea of the algorithm is to assign codes to points in
the data. To illustrate this, consider the Sierpinski triangle, as
shown in Figure 6.3. Each application of a distinct, finite se-
quence of components maps the initial triangle to a disjoint re-
gion. Whether these regions are disjoint depends on the initial
image and the IFS, but since it helps to illustrate the point, we
have chosen those here so that they are. We can label each region
with the specific sequence of components that mapped the initial
triangle to that point: its code. Note that finding a code corre-
sponding to a particular endpoint can be counter-intuitive, as the
first component applied determines the location at the smallest
scale, and the last component applied determines the location at
the largest scale.

2To generalize to non-spherical MVNs and mixtures over non-spherical MVNs,
the component family should be extended to positive definite affine functions.

116 AN EM ALGORITHM FOR THE INVERSE PROBLEM

Given a model like the Sierpinski triangle, it’s a straightfor-
ward matter to find the best code for a given point. Conversely,
given the best code for each point, we can reconstruct the trans-
formations, since we know which regions of space map to one
another under each transformation. This is the basic idea of the
algorithm: we iterate these two steps. We find the codes given
some initial model, reconstruct a new model from the codes and
we iterate this process.

Finding the codes given a model is called the expectation step,
and finding the model given the codes is called the maximization
step. We will detail both steps below.

6.3.1 Expectation: the latent variables

Instead of assigning a single code to a single point, however, we
make this step probabilistic: each code takes a certain amount
of responsibility for every point x. The responsibility taken by
component j for point i is p(cj | xi) ∝ p(xi | cj)p(cj). These
factors correspond to:

p(x | cj) = N(x;µj,Σj)

p(cj) = p(d)
∏
i

p(cj) = v|cj|
∏
i∈cj

wi

Where µj is the mean corresponding to fj(N0) with fj = fp ◦
fcj1 ◦ fcj2 ◦ . . . ◦ fcjd , and Σj is the covariance matrix fj(N0).

Let M = |[1,K][0,D]| and let P be an N×M matrix with:

Pij = p(cj | xi) =
p(xi | cj)p(cj)∑

a∈[1,K][0,D] p(xi | ca)p(ca)
.

The size of this matrix will grow very fast with D, and most
of its values will be practically indistinguishable from 0 when
normalized. For this reason, it may be advisable to set all but the
largest values to 0, and store the matrix in a sparse datastructure.
For our experiments, such optimizations were not necessary.

6.3 The EM algorithm for IFS models 117

6.3.2 Maximization: the parameters

This section provides only the equations for each parameter, with
a brief motivation. See the appendix for more detailed deriva-
tions.

Let θold be the model we used to compute the responsibili-
ties. Filling in the probability functions for our data and latent
variables, the Q-function (6.2) becomes:

Q(θ) =
∑
i

p(zi | xi, θold) lnp(xi | zi, θ)p(zi | θ)

=

N,M∑
i=1,j=1

Pij lnNj(x) v|cj|
∏
a∈cj

wa .

The maximization step consists in optimizing Q for the dif-
ferent parts of θ. In most cases, we can achieve this by taking
the partial derivative and setting it equal to zero. For clarity of
notation, when optimizing for a certain subset q of the parame-
ters θ (such as the depths, weights or parts of the components)
we will write Q(q), and omit any terms that are constant with
respect to q. We may also omit any constant multiplier of the
whole function.

The depths vd To find the optimal depth weights we solve
∂Q(v)/∂v = 0, using a Lagrange multiplier to enforce that v
sums to one, which gives us:

v̂d =
pd∑
i p
i

with pd =
∑

i,j:|cj|=d

Pij

The components fk and weights wk Even if we optimize the
latent variables and the parameters separately, the optimization
of fk and fp is difficult. We must find K maps and weights, and
a post-transformation fp, such that all the M endpoint distribu-
tions provide maximal likelihood to their assigned points. The
problem is that each term in Q is a complicated mix of multiple

118 AN EM ALGORITHM FOR THE INVERSE PROBLEM

components.
To make the optimization of Q practical, we simplify the task

in two ways. First, we optimize fp and ({fk}, {wk}) separately,
taking the parameters not being optimized from θold. Second,
we simplify the Q function. We first rewrite it as follows: Let
kcj be the code 〈k, cj1, . . .〉 and let M− = |[1,K][0,D−1]|. Let Y =

fold
p

−1
(X). Then:

Q({fk}, {wk})

=
∑
k

N,M−∑
i=1,j=1

p(kcj | xi, θold) ln fpfk(Nj)(xi)p(cj | θold)p(k)

=
1
sp

∑
k

∑
i,j

Pkij ln
[
fk(Nj)(yi) v|cj|+1p(cj) wk

]
.

Where we have defined a submatrix Pk of P, which contains all
columns corresponding to codes beginning with the symbol k:

Pkij = p(kcj | xi) =
p(xi | kcj)p(kcj)∑

a∈[1,K][0,D] p(xi | ca)p(ca)
.

We have now written Q in a form that isolates only the first
component in the code. Of course, each Nj in this sum still de-
pends on all the components in the code cj, but this is where
we simplify the function: we take Nj to be a constant, computed
from θold, and optimize only for the first component in the code.
This gives us, for the k-th component:

Q(fk,wk) =
∑
i,j

Pkij ln fk(Nj)(yi) +
∑
i,j

Pkij lnwk

Finding the optimalwk follows the same principle as the depths:
we take the derivative, set it equal to 0, and use a Lagrange mul-
tiplier for the constraint. We find:

ŵk = pk/
∑
i

pi .

with pk = 1TPk1, the sum of the elements of Pk.

6.3 The EM algorithm for IFS models 119

If we isolate fk, the problem is very similar to the one solved to
construct the Coherent Point Drift (CPD) algorithm [71]: trans-
form a given set of MVNs to maximize the likelihood of a dataset,
with respect to responsibilities P. The main difference is that in
our situation, each component Nj has its own variance. We fol-
low the same approach, and as we shall see, the solutions for our
problem are very similar to those of the CPD algorithm.

Using Equation 6.1 from the preliminaries, we can rewrite
Q(fk) as a mixture of transformations of N0:

Q(sk,Rk, tk) = −pkH ln sk −
∑
i,j

Pkij
1

2sj2sk2 ‖yi − tk − skRktj‖
2

where sj, Rj and tj are the parameters of the similitude fp ◦ cj1 ◦
. . . ◦ cjd.

To find the optimal translation tk, we solve ∂Q(tk)/∂tk = 0,
which yields, in matrix notation:

t̂k =
1
pkz
YPkZ1 −

1
pkz
skRkTZP

kT1 = yk − skRkt
k

where T is the matrix with tj as its columns,

Z = diag(s1
−2, . . . , sM−2)

and pkz = 1TPkZ1. Thus t̂k is the difference between a weighted
mean of the data yk and a weighted mean of the endpoint means
tj, scaled and rotated, where in both cases, the matrix PkZ, nor-
malized to sum to one, determines the weights. Note that this is
not a complete solution, since it still depends on sk and Rk. We
can, however, plug t̂k back into the Q-function to optimize for
Rk.

Finding the optimal rotation matrix Rk is more complex than
simply finding the derivative and setting it equal to zero, since we
have the constraint that Rk is orthogonal and has determinant 1.
We use the technique described in [70] and [71, Lemma 1]. We
first rewrite the objective function to the form tr(ATRk), for some

120 AN EM ALGORITHM FOR THE INVERSE PROBLEM

A. We fill in t̂k, and reduce to

Q(Rk) = tr
([
YkPkZTk

T
]T
Rk

)
with

{
Yk = Y − yk1T

Tk = T − tk1T

The optimal Rk can be derived from the singular value decom-
position (SVD) of A = YkPkZTk

T
: if A = USVT , with U,

S and V defined as normal for the SVD then we have R̂k =

U diag(1, . . . , 1, |UVT |) VT .
Finally, we derive the scaling parameter sk by filling in t̂k and

solving ∂Q(sk)/∂sk = 0. We get:

0 = sk
−2 tr(Yk

T
diag(PkZ1)Yk) + sk−1 tr(TkZPk

T
Yk
T
Rk) −Hp

k .

This is a quadratic equation in sk−1, which we can solve and
invert to find ŝk.

The post transform: sp, Rp, tp We now fix the components
fk, considering them constant and taking their values from θold,
and optimize for the parameters of fp. The Q-function becomes:

Q(sp,Rp, tp) =
N,M∑
i=1,j=1

p(cj | xi) ln fp(Nj)(xi)p(cj)

= −p ln sp −
1

2sp2

∑
i,j

sj
−2Pij‖x− tp − spRptj‖2

where sj and tj are constants derived from θold. Note that j now
iterates over all codes.

The form of this Q function is the same as the ones we used
to derive the optimal components fk. We follow the same deriva-
tions and get:

t̂p = x− spRpt
p

R̂p = U diag(1, . . . , 1, |UVT |) VT

with USV = svd(A), A = XpPZTpT

6.3 The EM algorithm for IFS models 121

with

xp = (1TPZ1)−1XPZ1 tp = (1TPZ1)−1TZPT1

Xp = Xp − xp1T Tp = T − tp1T

Z = diag(s1
−2, . . . , sM−2)

Finally, for sp, we solve

0 = sp
−2tr(XTd(PZ1)X) + sp−1tr(TZPTXTRp) −Hp

6.3.3 Dealing with singularities

In the EM algorithm for MVN mixtures, there is a danger that the
algorithm becomes stuck in a situation where one or more of the
components do not have responsibility for any part of the data,
or for only a single point. In this case, the covariance matrix for
such components cannot be computed, and the algorithm must
be reset in some way.

In the IFS algorithm a similar thing can happen, causing one
or more of the matrices Pk to become low-rank. In this case,
the SVD decomposition required to find Rk cannot be computed.
When this happens, we use the following strategy: we remove the
undetermined component, and for each one we split one of the
well-determined components. Let fa = (sa,Ra, ta) with weight
be the well-determined component and fb be the singleton com-
ponent. We resolve the situation by setting:

fa ← (sa,Ra, ta + εa)

fb ← (sa,Ra, ta + εb)

where εa, εb are vectors with elements randomly drawn from
N(0,σ), where we use σ = 0.01 in all experiments. The old
weight wa is distributed equally over the components fa and fb
and the weight vector is re-normalized.

The rationale is easiest to understand if we take v1 = 1 and

122 AN EM ALGORITHM FOR THE INVERSE PROBLEM

view the model as a mixture of Guassians. In that case, the well-
determined components cover all the data. By splitting fa, and
adding some small noise, the points formerly ‘claimed’ by fa will
now be distributed approximately evenly between fa and fb.

A second trap is that the variance of the endpoint distributions
can become so small that, even using logarithmic representation,
all matrices Pk become low-rank (ie, all entries are 0 for certain
components). If this happens, we reset the algorithm by approxi-
mating P and all Pk: we still use the endpoint means tj from the
model, but we place an MVN with a fixed standard deviation on
each (0.01 in all experiments) and re-compute the responsibili-
ties under that model.

6.4 Results

To speed up the algorithm, we use a subsample (with replace-
ment) from the data in all experiments. After each iteration (one
expectation and one maximization step), we draw another sam-
ple. The sample size is always 500. We run the algorithm for 300
iterations, with maximum depth 6. In practice, it may be advis-
able to increase the sample size and the depth as the algorithm
begins to converge, but for the sake of simplicity, we have kept
the parameters fixed.

For our initial model we use the following process: we choose
K points {zk} uniformly at random on the bi-unit sphere. We then
construct for each of these points, a similitude fk with sk = 0.5,
and a uniform random rotation, choosing tk so that fk’s fixed
point is zk. This results (for K = 3) in a kind of Sierpinski triangle
covering a decent amount of the space occupied by the data. v
and w are initialized with all values equal.

6.4.1 Synthetic distributions

Figure 6.4 shows the performance of the algorithm on four well-
known fractals: the Sierpinski gasket, a Sierpinski gasket with
unequal weights, and two- and four-component versions of the
Koch curve.

For each dataset we repeated the experiment 100 times and
show both the model with its learned mixture over depths, and
what the IFS looks like when evaluated to infinite depth.3We

6.4 Results 123

data it. 20 it. 40 final model full depth

Figure 6.4: Results of EM search for known models. The boxes
show the model: the post-transform maps the image frame onto
the larger box, and each component maps the larger box onto
one of the smaller boxes. The bars in the side of the blue boxes
show the weight of each component. The learning tasks, from
top to bottom are: the Sierpinski gasket, the Sierpinski gasket
with unequal weights, the Koch curve with 4 components and
the Koch curve with two components.

124 AN EM ALGORITHM FOR THE INVERSE PROBLEM

show the run that ended with a model with the greatest likeli-
hood (on the training data). the end results of all runs are shown
in the appendix.

It is difficult to objectively quantify the number of trials that
successfully converged to the required IFS. One may suggest test-
ing the likelihood of the data under the learned model, to see if it
is close to that of the target model, but the likelihood grows ex-
ponentially as the higher depths get greater weight (if the model
is correct). This means that unless the algorithm finds the abso-
lute correct model, the likelihoods of any learned model, correct
or otherwise, will be much closer to one another than to the like-
lihood of the target model.

We inspected the resulting models for each of the 100 runs
visually to determine whether they were good approximations,
and report the proportions here, with the proviso that these nec-
essarily include some level of subjective judgment. The complete
set of results for each experiment is reproduced in the appendix.
We estimate that the following proportion of experiments ended
in the neighbourhood of one of the global optima:
Sierpinski 67%
Sierpinski, unequal weights 51%
Two-component Koch 20%
Four-component Koch 23%
In all cases, we can see in the complete results that there are
many different ways to achieve the same limit set, especially with
the extra degrees of freedom introduced by the addition of the
post transform. We also observe that if the component weights in
the source of the data are uneven, this makes the learning task
more difficult. The more uneven the weights become, the more
likely the model is to get stuck in a local optimum. We have also
found that working with centered data, and eliminating the post
transform drastically improves results, but how the data should
be centered is only known if the source of the data is known.
Therefore, such experiments are not representative of a realistic
parameter estimation scenario.

3Such data can be sampled using an algorithm known as the chaos game [17].

6.4 Results 125

6.4.2 Non IFS data

Next, we try the model on five non-IFS datasets. The first three
are derived from images of fractal phenomena: a Romanesco
broccoli, a coast line, and the edge of a cloud, illuminated by
sunshine. While these are fractals, they also contain a degree of
noise, and a deterministic IFS is unlikely to capture them per-
fectly. The fourth dataset is sampled from a uniform distribution
on the bi-unit disc. Unlike the square, the disc cannot be de-
scribed as an IFS, so the deeper models will likely leave “gaps”
of low probability density. At low depths, however, the model is
forced to spend probability mass on the area outside the disc, so
some balance must be struck.

While none of these datasets are IFSs, the first three do con-
tain self-similarity, and we see that the models are using the
higher depths of the IFS to capture that. In the case of the circle,
we see that the learned model looks very different from a circle
(which cannot be described as the limit set of an IFS), but there
is nevertheless an IFS that places probability mass in the correct
regions.

6.4.3 Complexity

To give an indication of the complexity of the algorithm, we plot
the time taken for a single expectation step and a single maxi-
mization step, against three variables: the size of the data sam-
ple, the dimension of the data, and the maximum depth.

In the first case, we sample the data from a three-dimensional
standard normal distribution, use the Sierpinski gasket as an ini-
tial model, and compute one full iteration of the algorithm, mea-
suring the time taken to complete the expectation and the maxi-
mization step. The depth is set to 5.

For the second test, we again sample from a standard normal
distribution, but we vary its dimension from 1 to 50. The model
is initialized at random using the method described earlier. The
depth is set to 5.

For the final test we use the same procedure as for the first,
but we fix the data size at 250 and vary the depth from 0 to 10.

For all values, the experiments were repeated 100 times. The

126 AN EM ALGORITHM FOR THE INVERSE PROBLEM

data it. 20 it. 40 final model full depth

Figure 6.5: Results of EM search for known models. The red and
blue boxes show the model: the post-transform maps the image
frame onto the red box, and each component maps the red box
onto a blue box. The bars in the side of the blue boxes show
the weight of each component. The learning tasks, from top to
bottom are: the outline of a cloud, shadows cast on a romanesco
broccoli, a small part of the Australian coast, a uniform distribu-
tion on the bi-unit disc and a uniform distribution on a circle.

6.5 Discussion 127

Figure 6.6: The time taken for a single iteration of the algorithm,
separated into the expectation and the maximization step. For
each value, the iteration was computed one hundred times. The
graph shows the mean over these repetitions, the error bars show
a 95% confidence interval (i.e. 1.96 times the standard error on
both sides). Note the logarithmic axes on the second and third
plot.

order of the experiments was randomized over all values, repeats
and variables, to eliminate any temporary effects, like increased
network load. The experiments were performed on a single ma-
chine with 8 Gigabyte of java heapspace and 2 1.80 Ghz Intel
Xeon processors (E5-2650L). The code for a single iteration is
single-threaded, and the matrix operations were not hardware
accelerated.4These options are still open to improve the algo-
rithm’s efficiency. The fast Gauss transform [45, 95] may also
speed up the computation of the expectation step.

Figure 6.6 shows the result. The strongest growth is in the
depth, which is at least exponential, as the number of columns
of P alone grows exponentially in D. The growth in dimension
looks to be polynomial first, up to around 20, and exponential af-
terwards. Why this is the case, and whether a polynomial growth
for all dimensions is achievable requires further analysis.

6.5 Discussion

We have introduced a new algorithm for the induction of frac-
tal models. To our knowledge, this is the first such algorithm
that does not use a general-purpose optimization technique like
genetic algorithms.

4Specifically, we used the Apache Commons Mathematics library.

128 AN EM ALGORITHM FOR THE INVERSE PROBLEM

Similitudes were chosen as a nice balance between expressive-
ness and parameter complexity. More general function classes are
certainly possible, although deriving the maximization step ana-
lytically may not be possible for these, and convex optimization
or even locally optimal solutions may be required in the maxi-
mization step.

An alternative approach would be to use a variational Bayesian
algorithm [19] instead of an EM algorithm. If a variational opti-
mization algorithm exists for the desired function class, it should
be straightforward to plug this into a general variational algo-
rithm for iterated function systems. Such an approach would also
avoid the problem of singularities, and it would allow some tun-
ing of the algorithm through the selection of priors. We consider
this a promising direction for future research.

Many natural fractal phenomena are not precisely captured
by iterated functions systems. Coastlines, trees and clouds are
self-similar, but in a much more random manner than IFSs can
describe. One solution takes the form of an extension to random
iterated function systems, as described in [48]. Here, at each
application the IFS is itself chosen at random from a distribu-
tion on IFSs. Another option would be to manually add domain
knowledge about the data into the model, for instance, specific
knowledge about the development of clouds or the growth of
trees. In both cases, we believe the EM algorithm provides a basic
template for a solution: the main issue is that of finding the spe-
cific choices made inside the model to arrive at each point in the
dataset. By casting this sequence of choices as a latent variable,
we can divide and conquer: we cannot solve the problem as a
whole, but we can find the latent variables given the parameters,
and the parameters given the latent variables. Our original mo-
tivation was the case of self-similar graphs. The graph-analogue
of an IFS is a Kronecker graph: Kronecker graphs have been se-
riously studied as models for real-world graph data [60]. Cur-
rently, these models are fit by a gradient descent algorithm. The
latent-variable approach described here, may translate to algo-
rithms for fitting Kronecker graphs. As noted in the introduction,

most research on large graphs implicitly assumes some level of
self-similarity in the graph under study. Models like these make
this assumption explicit, and may lead to new insight into the
structure of large graphs.

Algorithm 2 One iteration of the IFS-EM algorithm.
Given: a dataset X, a number of components K, a maximum
depth D.

Pij ← Nj(xi)v|cj|
∏
a∈cjwa # Expectation step

Normalize P so that P1 = 1
for each k ∈ [1,K]:

Let Pk be the submatrix of P’s columns j for which cj1 = k

Y ← fold
p

−1
(X) # Maximization step

for all d, v̂d ∝
∑
j:|cj|=d

Pij
for each k ∈ [1,K]:
ŵk ← 1TPk1/

∑
i 1TPi1

yk ← pk
−1
YPkZ1, tk ← pk

−1
TZPk

T
1

Yk ← Y + yk1T , Tk ← Tk + tk1T

Z← diag(s1
−2, . . . , sM−

−2)

U,S,VT ← svd(YkPkZTk
T
)

R̂k ← U diag(1, . . . , 1, |UVT |)VT

ŝk: solve sk−2 tr(Yk
T

d(PkZ1)Yk)+sk−1 tr(TkZPk
T
Yk
T
Rk)−

Hpk = 0
t̂k ← yk − skRkt

k

Xp ← X− xp1T , Tp ← T + tp1T

Z← diag(s1
−2, . . . , sM−2)

U,S,VT ← svd(XpPZTpT)
R̂p ← U diag(1, . . . , 1, |UVT |)VT

ŝp: solve sp−2tr(XTd(PZ1)X) + sp−1tr(TZPTXTRp) −Hp = 0
t̂p ← xp − spRpt

p

THE SINGLE SAMPLE SETTING

We began our introduction with an esoteric scenario: a scientist
faced with a single sample of data, driven to frustration by the
mountainous task of unlocking its secrets with no access to other
examples. Then, as we began to pick away at the possibilities
and impossibilities of his situation, we found, step by step, that
he is not so different from the rest of us. The perspective we took
consisted of datasets as single bit strings and their analysis by
effective methods: computer programs.

So what have we discovered? What secrets can Onno Quist
hope to unlock from the Phaistos disc? In Chapter 3, we saw
what he can achieve if he is willing to make a model assumption.
Under such an assumption, he can compute an approximation
and be almost certain that he has approximated the Kolmogorov
complexity with good accuracy, at least in an asymptotic sense.
This holds for standard model classes, such as DFAs, HMMs or
Normal distributions, but the principle also applies to far broader
model classes that are not usually explored in statistics, like those
defined by a resource bound.

Chapter 4 brought more sobering news. Even if a represen-
tation that reaches the Kolmogorov complexity captures all pat-
terns that we can hope to understand, we cannot separate those
patterns into structure and noise objectively. The ultimate hope,
for Onno, would be to fit a Turing machine to the Phaistos disc,
such that running the Turing machine again, with a random in-
put, would cause the machine to produce another example of a
Phaistos disc, just as if it had been freshly stamped by the ancient
Minoan workshops that produced the original. Here we must
disappoint: there are many Turing machines that achieve the Kol-
mogorov complexity, and the way they respond if we run them
with a random input varies greatly. One of them, the universal
Turing machine, will produce simply another object, a sample
from the universal distribution. This could be anything from a
new Shakespeare play, to a proof of the Goldbach conjecture, to

completely random noise. Another Turing machine, which com-
presses the Phaistos disc just as well, when run, will output ex-
actly the same Phaistos disc we know already, every single time.
Somewhere in between these two extremes, there may be a solu-
tion that does what we had hoped for: another Phaistos disc, like
the original one, but not exactly like it. Unfortunately for Onno,
without a second sample we have no basis to decide which we
should choose. It seems that the choice of which parts of the
data are noise and which are structure, can simply not be made
objectively.

Still, Onno is not quite forced to make assumptions he can
never prove. An alternative strategy, that will let him learn some-
thing at least, is to make assumptions in the hope of disproving
them. Consider for instance, that we have the intuition that suc-
cessive symbols of the disc should be grouped together, so that
each pair forms a “word” in the language of the disc. If this is
true, and some such “words” are more likely than others, a com-
pressor that uses this idea may allow us to compress the symbol
sequence. Such a result does not prove that the disc consists
of words of two symbols, but we can use it to disprove other hy-
potheses. For instance, if this compressor achieves a shorter code-
length than any compressor that casts every individual symbol on
the disc as the result of an independent draw from some distribu-
tion on the complete alphabet, we have disproved the hypothesis
that the disc is simply a sequence of independently drawn sym-
bols from a single distribution.

We use this principle in Chapter 5 to analyze complex graphs.
Complex graphs are a relatively new form of dataset, and a lot
of traditional techniques do not apply in this domain. A graph
does not provide us with easily identifiable “building blocks.” In
fact, in most complex graphs, every node is a handful of steps
removed from every other node, so that even defining the idea
of a neighbourhood becomes troublesome. We built on the idea
of a network motif, a frequently recurring subgraph, and use the
principle described above to construct a new, fast method for the
discovery of network motifs.

Finally, in Chapter 6, we investigated a more unusual type
of structure: self-similarity. Self-similarity occurs if a large part

of a dataset is in some sense similar to a scaled down copy of
itself. The way a head of broccoli seems to consist of smaller
heads of broccoli, the way a sentence may consist of smaller
sub-sentences or the way a large organization is organized into
smaller sub-organizations. To study such self-similar structure,
we made things easy for ourselves and studied the most self sim-
ilar objects possible: iterated function systems (IFSs). In IFSs, the
self similarity is exact: they can be cut into parts so that every
part is exactly a scaled down copy of the whole. We developed
an algorithm that can learn IFS model from a dataset sampled
from them, showing that, in principle at least, self-similar struc-
ture can be learned.

To establish a thematic connection between the chapters of
this thesis, we described a perspective on the business of making
inferences from data. We framed a statistician as someone trying
to find Turing machines that are likely to generate his data. Data
which constitutes a single sample from a computable distribu-
tion. While not every working statistician may identify with this
view, it has provided us with some insight. We have found that
there are things we can’t do in general, like consistent model
selection, things that only work under highly restricted model-
constraints. Other things we saw, remain possible, no matter
how broad we make our model class. We have also seen that
such a perspective can be highly valuable when a new form of
data arrives, such as the complex graph, which defies traditional
methods of analysis. In such situations we will see a multitude of
methods emerge as each researcher invents new ways of tackling
the new form of data, each from his own perspective, tailored
to his own needs. How each method compares to the next, how
they relate and differ, becomes a difficult question to answer. The
single sample setting provides a simple railing against which we
can steady ourselves in this storm of new ideas. At the very least,
we are all of us faced with a single finite bit string, and we are
all hoping to find a computable process that can reproduce the
patterns in that string.

REFERENCES

[1] http://chrisharrison.net/projects/bibleviz/

index.html. Accessed: 2014-08-22.
[2] King James network dataset – KONECT, October 2014.
[3] American revolution network dataset – KONECT, April

2015.
[4] Cattle network dataset – KONECT, January 2015.
[5] Physicians network dataset – KONECT, April 2015.
[6] Wikipedia, nl (dynamic) network dataset – KONECT, April

2015.
[7] L. A. Adamic, J. Zhang, E. Bakshy, and M. S. Ackerman.

Knowledge sharing and Yahoo answers: everyone knows
something. In Proceedings of the 17th International Confer-
ence on World Wide Web, WWW 2008, Beijing, China, April
21-25, 2008, pages 665–674, 2008.

[8] P. Adriaans. Facticity as the amount of self-descriptive in-
formation in a data set. arXiv preprint arXiv:1203.2245,
2012.

[9] R. Albert and A. L. Barabási. Statistical mechanics of com-
plex networks. Reviews of modern physics, 74(1):47, 2002.

[10] J. E. Angus. Bootstrap one-sided confidence intervals for
the log-normal mean. The Statistician, pages 395–401,
1994.

[11] L. Antunes, L. Fortnow, D. van Melkebeek, and N. V. Vinod-
chandran. Computational depth: concept and applications.
Th. Comp. Sc., 354(3):391–404, 2006.

[12] L. F. C. Antunes, B. Bauwens, A. Souto, and
A. Teixeira. Sophistication vs logical depth, 2013.
http://arxiv.org/abs/1304.8046.

[13] L. F. C. Antunes and L. Fortnow. Sophistication revisited.
Theory Comput. Syst., 45(1):150–161, 2009.

[14] L. F. C. Antunes, A. Matos, A. Pinto, A. Souto, and A. Teix-
eira. One-way functions using algorithmic and classical in-
formation theories. Theory Comput. Syst., 52(1):162–178,

http://chrisharrison.net/projects/bibleviz/index.html
http://chrisharrison.net/projects/bibleviz/index.html

2013.
[15] L. F. C. Antunes, A. Matos, A. Souto, and P. M. B. Vitányi.

Depth as randomness deficiency. Theory Comput. Syst.,
45(4):724–739, 2009.

[16] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and S. Vigna.
Four degrees of separation. In Proceedings of the 4th Annual
ACM Web Science Conference, pages 33–42. ACM, 2012.

[17] M. F. Barnsley. Fractals everywhere. Academic press, 2014.
[18] A. Barvinok. On the number of matrices and a random ma-

trix with prescribed row and column sums and 0–1 entries.
Advances in Mathematics, 224(1):316–339, 2010.

[19] M. J. Beal. Variational algorithms for approximate Bayesian
inference. University of London, 2003.

[20] C. H. Bennett. Logical depth and physical complexity. In
The Universal Turing Machine: A Half-Century Survey. Ox-
ford University Press, 1988.

[21] I. Bezáková, A. Kalai, and R. Santhanam. Graph model se-
lection using maximum likelihood. In W. W. Cohen and
A. Moore, editors, Machine Learning, Proceedings of the
Twenty-Third International Conference (ICML 2006), Pitts-
burgh, Pennsylvania, USA, June 25-29, 2006, volume 148 of
ACM International Conference Proceeding Series, pages 105–
112. ACM, 2006.

[22] J. K. Blitzstein and P. Diaconis. A sequential importance
sampling algorithm for generating random graphs with
prescribed degrees. Internet Mathematics, 6(4):489–522,
2011.

[23] P. Bloem, F. Mota, S. de Rooij, L. Antunes, and P. Adriaans.
A safe approximation for Kolmogorov complexity. In ALT,
pages 336–350, 2014.

[24] C. J. Carstens. Motifs in directed acyclic networks. In Inter-
national Conference on Signal-Image Technology & Internet-
Based Systems, SITIS 2013, Kyoto, Japan, December 2-5,
2013, pages 605–611. IEEE, 2013.

[25] J. Chen, W. Hsu, M. Lee, and S. Ng. Nemofinder: dissecting
genome-wide protein-protein interactions with meso-scale
network motifs. In T. Eliassi-Rad, L. H. Ungar, M. Craven,
and D. Gunopulos, editors, Proceedings of the Twelfth ACM

SIGKDD International Conference on Knowledge Discovery
and Data Mining, Philadelphia, PA, USA, August 20-23,
2006, pages 106–115. ACM, 2006.

[26] Q. Cheng. Multifractal modeling and lacunarity analysis.
Mathematical Geology, 29(7):919–932, 1997.

[27] R. Cilibrasi and P. M. B. Vitányi. Clustering by compression.
IEEE Transactions on Information Theory, 51(4):1523–1545,
2005.

[28] J. Coleman, E. Katz, and H. Menzel. The diffusion of an
innovation among physicians. Sociometry, pages 253–270,
1957.

[29] P. Collet, E. Lutton, F. Raynal, and M. Schoenauer. Polar IFS
+ Parisian genetic programming ēfficient IFS inverse prob-
lem solving. Genetic Programming and Evolvable Machines,
1(4):339–361, 2000.

[30] D. J. Cook and L. B. Holder. Substructure discovery using
minimum description length and background knowledge.
CoRR, cs.AI/9402102, 1994.

[31] T. M. Cover. Kolmogorov complexity, data compression, and
inference. In The Impact of Processing Techniques on Com-
munications, pages 23–33. Springer, 1985.

[32] T. M. Cover and J. A. Thomas. Elements of information the-
ory (2. ed.). Wiley, 2006.

[33] G. Davies. How a statistical formula won the war, July
2006.

[34] R. Deliu, F. Shonkwiler, and A. Mendivil. Genetic algo-
rithms for the 1-d fractal inverse problem. In Proceedings
of the fourth international conference on genetic algorithms,
page 495. Citeseer, 1991.

[35] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the em algorithm. Jour-
nal of the royal statistical society. Series B (methodological),
pages 1–38, 1977.

[36] P. Gács, J. Tromp, and P. M. B. Vitányi. Algorithmic statis-
tics. IEEE Transactions on Information Theory, 47(6):2443–
2463, 2001.

[37] P. Gács, J. Tromp, and P. M. B. Vitányi. Algorithmic statis-
tics. IEEE Tr. Inf. Th., 47(6):2443–2463, 2001.

[38] J. L. Gailly and M. Adler. The GZIP compressor, 1991.
[39] J. Gehrke, P. Ginsparg, and J. Kleinberg. Overview of

the 2003 kdd cup. ACM SIGKDD Explorations Newsletter,
5(2):149–151, 2003.

[40] M. Gell-Mann and S. Lloyd. Information measures, effective
complexity, and total information. Complexity, 2(1):44–52,
1996.

[41] M. Gell-Mann and S. Lloyd. Effective complexity. Nonex-
tensive Entropy-Interdisciplinary Applications, by Edited by
Murray Gell-Mann and C Tsallis, pp. 440. Oxford Uni-
versity Press, Apr 2004. ISBN-10: 0195159764. ISBN-13:
9780195159769, 1, 2004.

[42] C. I. Del Genio, H. Kim, Z. Toroczkai, and K. E. Bassler.
Efficient and exact sampling of simple graphs with given
arbitrary degree sequence. CoRR, abs/1002.2975, 2010.

[43] E. N. Gilbert. Random graphs. The Annals of Mathematical
Statistics, pages 1141–1144, 1959.

[44] A. L. Goldberger. Fractal mechanisms in the electrophys-
iology of the heart. Engineering in Medicine and Biology
Magazine, IEEE, 11(2):47–52, 1992.

[45] L. Greengard and J. Strain. The fast gauss transform. SIAM
Journal on Scientific and Statistical Computing, 12(1):79–
94, 1991.

[46] P. Grünwald and P. M. B. Vitányi. Shannon information and
Kolmogorov complexity, 2004. arXiv:cs/0410002.

[47] P. D. Grünwald. The Minimum Description Length Princi-
ple. Adaptive computation and machine learning series. The
MIT Press, 2007.

[48] J.C. Hart. Fractal image compression and recurrent iterated
function systems. Computer Graphics and Applications, IEEE,
16(4):25–33, 1996.

[49] J.C. Hart, W.O. Cochran, and P.J. Flynn. Similarity hashing:
A computer vision solution to the inverse problem of linear
fractals. FRACTALS-LONDON-, 5:39–50, 1997.

[50] F. C. Hennie and R. E. Stearns. Two-tape simulation of mul-
titape Turing machines. J. ACM, 13(4):533–546, 1966.

[51] J.E. Hutchinson. Deterministic and random fractals. Com-
plex Systems, pages 127–166, 2000.

[52] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon. Efficient sam-
pling algorithm for estimating subgraph concentrations and
detecting network motifs. Bioinformatics, 20(11):1746–
1758, 2004.

[53] J. Kiefer. Sequential minimax search for a maximum. Pro-
ceedings of the American Mathematical Society, 4(3):502–
506, 1953.

[54] H. Kim, C. I. Del Genio, K. E. Bassler, and Z. Toroczkai. Con-
structing and sampling directed graphs with given degree
sequences. New Journal of Physics, 14(2):023012, 2012.

[55] S. C. Kleene. On notation for ordinal numbers. J. Symb.
Log., pages 150–155, 1938.

[56] A. S. Konagurthu and A. M. Lesk. On the origin of distribu-
tion patterns of motifs in biological networks. BMC Systems
Biology, 2(1):73, 2008.

[57] M. Koppel. Structure. In The Universal Turing Machine: A
Half-Century Survey. Oxford University Press, 1988.

[58] M. Koppel and H. Atlan. An almost machine-independent
theory of program-length complexity, sophistication, and
induction. Inf. Sci., 56(1-3):23–33, 1991.

[59] P. S. Laplace. A philosophical essay on probabilities, trans-
lated from the 6th french edition by frederick wilson tr-
uscott and frederick lincoln emory, 1951.

[60] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and
Z. Ghahramani. Kronecker graphs: An approach to mod-
eling networks. The Journal of Machine Learning Research,
11:985–1042, 2010.

[61] M. Li, X. Chen, X. Li, B. Ma, and P. M. B. Vitányi. The
similarity metric. IEEE Transactions on Information Theory,
50(12):3250–3264, 2004.

[62] M. Li and P. M. B. Vitányi. An introduction to Kolmogorov
complexity and its applications, Second Edition. Graduate
Texts in Computer Science. Springer, 1997.

[63] M. Li and P.M.B. Vitányi. An introduction to Kolmogorov
complexity and its applications. Springer-Verlag, 1993.

[64] B. B. Mandelbrot. The fractal geometry of nature. Times
Books, 1982.

[65] B. B. Mandelbrot. Fractals in physics: squig clusters, dif-

fusions, fractal measures, and the unicity of fractal di-
mensionality. Journal of Statistical Physics, 34(5):895–930,
1984.

[66] B. D. McKay et al. Practical graph isomorphism. Department
of Computer Science, Vanderbilt University Tennessee, US,
1981.

[67] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii,
and U. Alon. Network motifs: simple building blocks of
complex networks. Science, 298(5594):824–827, 2002.

[68] F. Mota, S. Aaronson, L. F. C. Antunes, and A. Souto. So-
phistication as randomness deficiency. In DCFS 2013, pages
172–181, 2013.

[69] H. Mulisch. The discovery of heaven. De Bezige Bij, 1992.
Personal translation.

[70] A. Myronenko and X. Song. On the closed-form solution
of the rotation matrix arising in computer vision problems.
arXiv preprint arXiv:0904.1613, 2009.

[71] A. Myronenko and X. Song. Point set registration: Coherent
point drift. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 32(12):2262–2275, 2010.

[72] D.J. Nettleton and R. R. Garigliano. Evolutionary al-
gorithms and a fractal inverse problem. Biosystems,
33(3):221–231, 1994.

[73] M. E. J. Newman. Networks: an introduction. Oxford Uni-
versity Press, 2010.

[74] J. Preusse, J. Kunegis, M. Thimm, T. Gottron, and S. Staab.
Structural dynamics of knowledge networks. In Proc. Int.
Conf. on Weblogs and Social Media, 2013.

[75] T. Reguly, A. Breitkreutz, L. Boucher, B.J. Breitkreutz, G. C.
Hon, C. L. Myers, A. Parsons, H. Friesen, R. Oughtred,
A. Tong, et al. Comprehensive curation and analysis of
global interaction networks in saccharomyces cerevisiae.
Journal of biology, 5(4):11, 2006.

[76] A. Renyi and P. Erdős. On random graphs. Publicationes
Mathematicae, 6(290-297):5, 1959.

[77] P. Ribeiro, F. Silva, and M. Kaiser. Strategies for network
motifs discovery. In e-Science, 2009. e-Science’09. Fifth IEEE
International Conference on, pages 80–87. IEEE, 2009.

[78] R. Rinaldo and A. Zakhor. Inverse and approximation prob-
lem for two-dimensional fractal sets. Image Processing, IEEE
Transactions on, 3(6):802–820, 1994.

[79] J. Rissanen. Modeling by shortest data description. Auto-
matica, 14(5):465–471, 1978.

[80] J. Rissanen. Universal coding, information, prediction,
and estimation. IEEE Transactions on Information Theory,
30(4):629–636, 1984.

[81] J. Rissanen and G. G. Langdon. Arithmetic coding. IBM
Journal of research and development, 23(2):149–162, 1979.

[82] M. W. Schein and M. H. Fohrman. Social dominance rela-
tionships in a herd of dairy cattle. The British J. of Animal
Behaviour, 3(2):45–55, 1955.

[83] A. Kh. Shen. The concept of (α, β)-stochasticity in the
Kolmogorov sense, and its properties. Soviet Math. Dokl,
28(1):295–299, 1983.

[84] O. Sporns and R. Kötter. Motifs in brain networks. PLoS
Biol, 2(11):e369, 2004.

[85] S. A. Terwijn, L. Torenvliet, and P. M. B. Vitányi. Nonap-
proximability of the normalized information distance. J.
Comput. Syst. Sci., 77(4):738–742, 2011.

[86] J. Theiler. Estimating fractal dimension. JOSA A,
7(6):1055–1073, 1990.

[87] A. Turiel and C.J. Pérez-Vicente. Multifractal geometry in
stock market time series. Physica A: Statistical Mechanics
and its Applications, 322:629–649, 2003.

[88] A. M. Turing. On computable numbers, with an application
to the entscheidungsproblem. J. of Math, 58(345-363):5,
1936.

[89] N. Vereshchagin. Algorithmic minimal sufficient statistics:
a new approach. Theory of Computing Systems, pages 1–19,
2015.

[90] N. K. Vereshchagin and P. M. B. Vitányi. Kolmogorov’s
structure functions and model selection. IEEE Tr. Inf. Th.,
50(12):3265–3290, 2004.

[91] P. M. B. Vitányi. Meaningful information. IEEE Tr. Inf. Th.,
52(10), 2004.

[92] P. M. B. Vitányi. Meaningful information. IEEE Transactions

on Information Theory, 52(10):4617–4626, 2006.
[93] S. Wernicke. A faster algorithm for detecting network

motifs. In R. Casadio and G. Myers, editors, Algorithms
in Bioinformatics, 5th International Workshop, WABI 2005,
Mallorca, Spain, October 3-6, 2005, Proceedings, volume
3692 of Lecture Notes in Computer Science, pages 165–177.
Springer, 2005.

[94] E. Wong, B. Baur, S. Quader, and C. Huang. Biological net-
work motif detection: principles and practice. Briefings in
bioinformatics, 13(2):202–215, 2012.

[95] C. Yang, R. Duraiswami, N. Gumerov, L. Davis, et al. Im-
proved fast gauss transform and efficient kernel density es-
timation. In Computer Vision, 2003. Proceedings. Ninth IEEE
International Conference on, pages 664–671. IEEE, 2003.

[96] X. H. Zhou and S. Gao. Confidence intervals for the log-
normal mean. Statistics in medicine, 16(7):783–790, 1997.

ACKNOWLEDGEMENTS

In computer science writing, the convention is to avoid the singu-
lar, first person pronoun “I”. Even if a paper has only one author,
that author will choose phrases like “we performed the following
experiment” and “we consider this. . . ”. While this habit proba-
bly arose simply because single-author papers are relatively rare,
I have always taken it as a tacit acknowledgement that no re-
search is ever completed without the help of others, even when
only one person claims authorship. That is never more true than
in the case of a dissertation, and this one is no exception.

From observing both my own PhD process, and those of oth-
ers, I have come to appreciate the value of a good supervisor. I
have seen how bad things can get when supervision is lacking,
and how much is added when when things go right. In this re-
spect I have been extraordinarily fortunate.

Getting a PhD position in the first place was a difficult pro-
cess, and I am certain that without Pieter Adriaans, I would never
have had the opportunity to work on subjects like Kolmogorov
complexity, complex graphs and fractals. The very subjects that
topped my wishlist when I was looking for positions four years
ago. Since then, Pieter has been a never-ending source of in-
spiration, never afraid to draw connections between computer
science and physics, philosophy and even art. I have never been
one to enjoy computer science for its own sake, and it’s these
connections that have kept me interested. Even if the answers
we found were sometimes negative, the questions driving our re-
search were always the right ones.

To Steven de Rooij, my co-promotor, I probably owe this PhD.
When I started, like many PhD students I felt like I had done
enough learning, and nobody needed to show me any ropes.
This translated to far too long a period without publications, and
when he joined our group Steven had the thankless job of show-
ing me that I had plenty left to learn. Both about the business
of doing science, and about the business of communicating it.

Which is not to say that our interactions were unpleasant. Apart
from the occasional clash of a critical mind with a stubborn one,
I have enjoyed not only the way we worked together, but also
the way we didn’t, indulging in long conversations, ranging from
pop-culture to gender politics. It may have been detrimental to
my productivity, but it was certainly beneficial to my worldview.

Working with Gerben and Wibi, the two other members of our
little clique, was never less than a pleasure. The same goes for
the rest of the SNE group. I can only apologize for showering you
with formulas group meeting after group meeting. I am certain
that I will remember my time at the UvA fondly, and that is down
to you.

One of the greater challenges of my PhD was learning to do
the truly theoretical work shown in the first two chapters of this
thesis. Before I started I had proved to myself that I could un-
derstand such material, but I wasn’t at all sure that I could pro-
duce it. The first signs that things weren’t entirely hopeless came
during two months in Portugal, working with Lúıs Antunes and
Francisco Mota. The opportunity they gave me to focus for an
extended time on a single problem, coupled with the incredible
beauty of Porto in spring time, made those first steps that much
easier.

The last year, more than any, has been one of single-minded
focus. I must thank Gijs, Sandrijn, Danny, Sophie and Natalia,
not just for being there, but also for putting up with me not being
there. The less we met, the more it meant, and now that the thing
is done, I hope we can make up for lost time.

Finally, I want to thank my parents, Kees and Els. As I said,
most of my motivation to do this sort of thing derives from an
interest not just in science, but in the areas where it intersects
with subjects like philosophy and art. I can trace those influences
back to my childhood and the environment I grew up in. So I can
think of no two people more deserving of my acknowledgement.

DUTCH SUMMARY

Wat kunnen we leren van een enkel voorbeeld? Als een ingewik-
keld proces grote, complexe objecten genereert, en we krijgen
maar één voorbeeld van zo’n object, kunnen we dan nog conclu-
sies trekken over het proces? Als we patronen vinden, kunnen we
daar een betekenis aan toekennen? Dit is niet alleen een acade-
mische vraag. Er is maar één Internet, bijvoorbeeld, en maar één
wereldwijd financieel systeem. Wat voor soort aannames moe-
ten we doen over het proces dat dit “object” genereerde, om iets
over hun structuur te leren? Wat kunnen we voor elkaar krijgen
als we helemaal niks aannemen? Ieder hoofdstuk in deze disser-
tatie onderzoekt een aspect van deze vraag, beginnend met een
theoretische blik, die stap voor stap praktischer wordt.

De eerste twee hoofdstukken bieden een informele introduc-
tie tot de onderwerpen die steeds terugkeren. In Hoofdstuk 3
onderzoeken we het probleem in zijn meest generieke vorm, met
de theorie van Kolmogorov complexiteit. Kolmogorov complexiteit
is een manier om data te analyseren met maar één aanname: dat
de bron van de data als berekenbaar proces gezien kan worden.
Onder deze aanname biedt Kolmogorov complexiteit een formele
definitie van de hoeveelheid informatie die de data bevat. De Kol-
mogorov complexiteit zelf is niet berekenbaar, maar er zijn bere-
kenbare functies die als bovengrens kunnen dienen. Door aana-
mes te doen over de bron van de data kunnen we een approxima-
tie van de Kolmogorov complexiteit bereken die met hoge kans
dicht bij de daadwerkelijke waarde ligt. We analyseren ook func-
ties die afgeleid zijn van de Kolmogorov complexiteit. We laten
zien dat met een goede approximatie van de Kolmogorov com-
plexiteit, we nog niet per se direct een goede approximatie van
de afgeleide functies hebben, maar met een zorgvuldige analyse
is het mogelijk om bepaalde garanties te bieden.

Hoofdstuk 4 gaat over modelselectie. Als we slechts een enkel
voorbeeld hebben kunnen we dan iets zeggen over de complexi-
teit van de bron van de data? Hoeveel van de data is structuur en

hoeveel is ruis? De studie van deze vraag heeft verschillende na-
men: sophistication, de algorithmic sufficient statistic en effective
complexity. We laten zien dat al deze aanpakken fundamentele
problemen hebben. De voorgestelde functies kunnen niet corres-
ponderen met de intüıtie die ze motiveerde. Het blijft een open
vraag of objectieve modelselectie in deze zin mogelijk is, maar
we geven verschillende redenen om te geloven dat dit niet zo is.

In Hoofdstuk 5 behandelen we een praktisch probleem: de
analyse van grote complexe grafen. Dit zijn complexe objecten,
rijk aan interne structuur, maar zonder voor-de-hand-liggende
manier om de data in stukken te verdelen die op elkaar lijken.
Een populaire methode is om te zoeken naar kleine, veel voor-
komende subgrafen: network motifs. Het feit dat een subgraaf
vaak voorkomt is echter niet op zichzelf een indicatie dat het
ook een betekenisvol patroon is: veel subgrafen komen simpel-
weg vaak voor in iedere willekeurige graaf. Om te laten zien dat
zo’n subgraaf belangrijk is, moeten laten zien dat hij onverwacht
vaak voorkomt. We maken gebruik van het Minimum Description
Length principe, het praktische broertje van de Kolmogorov com-
plexiteit, om een nieuwe methode te ontwikkeling waarmee we
snel kunnen aantonen dat de frequentie van een subgraaf onver-
wacht hoog is. Hiermee kunnen we dit soort analyses opschalen
naar veel grotere grafen dan tot nu toe mogelijk was.

Waar het laatste hoofdstuk terugkerende structuren op de-
zelfde schaal behandelde, gaat Hoofdstuk 6 in op self-similarity;
terugkerende structuren op verschillende schalen. Dit is vaak een
cruciale aanname in graafanalyse. We kunnen bijvoorbeeld niet
het hele world wide web analyseren, dus nemen we aan dat een
kleine subset dezelfde eigenschappen als het hele web heeft. Het
leren van dit soort structuur is het fractal inverse probleem, een
belangrijke open vraag. We analyseren dit probleem in termen
van distributies in Euclidische ruimten, en we laten zien dat het
met een EM algoritme aan te pakken is.

Het vakgebied van statistiek is netjes opgedeeld naar data-
type. Voor iedere soort data bestaat een aparte familie van tech-
nieken. Het voorbeeld van statistiek op een enkel voorbeeld biedt
ons een overkoepelend perspectief: in alle gevallen analyseren
we feitelijk een enkele bitstring uit een berekenbaar proces. Het

“type” van de data is simpelweg een aanname die we doen over
de bron, vaak zodat we de data in stukken kunnen knippen, op
zo’n manier dat de overeenkomsten tussen die stukken informa-
tie bieden over de bron van de data. Dit perspectief wordt nuttig
als we moderne vormen van data, zoals complexe grafen, tegen-
komen, en de vraag hoe de data in stukken geknipt kan worden
niet makkelijk meer te beantwoorden is. In die situatie kunnen
we de data altijd opvatten als een bitstring, gegenereerd door een
berekenbaar proces.

A · PROOFS AND DERIVATIONS

Chapter 3

A.0.1 TMs and lsc. Probability Semimeasures (Lemma 3.1)

Definition A.1. A function f : B → R is lower semicomputable
(lsc.) iff there exists a total, computable two-argument function
f ′ : B × N → Q such that: limi→∞ f ′(x, i) = f(x) and for all i,
f ′(x, i+ 1) > f ′(x, i).

Lemma A.1. If f is an lsc. probability semimeasure, then there
exists a a function f∗(x, i) with the same properties of the func-
tion f ′ from Definition A.1, and the additional property that all
values returned by f∗ have finite binary expansions.

Proof. Let xj represent x ∈ D truncated at the first j bits of its
binary expansion and xj the remainder. Let f∗(x, i) = f ′(x, i)i.
Since f ′(x, i)−f∗(x, i)i is a value with i+1 as the highest non-zero
bit in its binary expansion, limi→∞ f∗(x, i) = lim f ′(x, i) = f(x).

It remains to show that f∗ is nondecreasing in i. Let x > y.
We will show that xj > yj, and thus xj+1 > yj. If x = y the
result follows trivially. Otherwise, we have xj = x−xj > y−xj =
yj+y

j−xj > yj−2−j. Substituting x = f ′(x, i+1) and y = f ′(x, i)
tells us that f∗(x, i+ 1) > f∗(x, i)

Theorem A.1. Any TM, Tq, samples from an lsc. probability
semimeasure.

Proof. We will define a program computing a function p ′q(x, i) to
approximate pq(x): Dovetail the computation of Tq on all inputs
x ∈ B for i cycles.

Clearly this function is nondecreasing. To show that it goes
to p(x) with i, we first note that for a given i0 there is a j such
that, 2−j−1 < pq(x) − pq(x, i0) 6 2−j. Let {pi} be an order-
ing of the programs producing x, by increasing length, that have
not yet stopped at dovetailing cycle i0. There is an m such that∑m
i=1 2−|pi| > 2−j−1, since

∑∞
i=1 2−|pi| > 2−j−i. Let i1 be the

150 PROOFS AND DERIVATIONS

dovetailing cycle for which the last program below pm+1 halts.
This gives us pq(x) − pq(x, i1) 6 2−j−1. Thus, by induction, we
can choose i to make p(x) − p ′(x, i) arbitrarily small.

Theorem A.2. Any lsc. probability semimeasure can be sampled
by a TM.

Proof. Let p(x) be an lsc. probability semimeasure and p∗(x, i)
as in Lemma A.1. We assume—without loss of generality—that
p∗(x, 0) = 0. Consider the following algorithm:

initialize s← ε, r← ε

for c = 1, 2, . . .:
for x ∈ {b ∈ B : |b| 6 c}
d← p∗(x, c− i+ 1) − p∗(x, c− i)
s← s+ d

add a random bit to r until it is as long as s
if r < s then return x

The reader may verify that this program dovetails computation
of p∗(x, i) for increasing i for all x; the variable s contains the
summed probability mass that has been encountered so far. When-
ever s is incremented, mentally associate the interval (s, s + d]
with outcome x. Since p∗(x, i) goes to p(x) as i increases, the
summed length of the intervals associated with x goes to p(x)
and s itself goes to s =

∑
x p(x). We can therefore sample from

p by picking a number r that is uniformly random on [0, 1] and
returning the outcome associated with the interval containing r.
Since s must have finite length (due to the construction of p∗),
we only need to know r up to finite precision to be able to deter-
mine which interval it falls in; this allows us to generate r on the
fly. Theprogram halts unless r falls in the interval [s, 1], which
corresponds exactly to the deficiency of p: if p is a semimeasure,
we expect the non-halting probability of a TM sampling it to cor-
respond to 1 −

∑
x p(x).

Theorems A.1 and A.2 combined prove that the class of distri-
butions sampled by Turing machines equals the lower semicom-
putable semimeasures (Lemma 3.1).

151

A.0.2 Domination of model class supersets

Lemma A.2. Let C and D be model classes. If C ⊆ D, then mD

dominates mC:

mD(x)

mC(x)
> α

for some constant α independent of x.

Proof. We can partition the models of D into those belonging to
C and the rest, which we will call C. For any given enumeration
of D, we get mD(x) = αmC(x) + (1 − α)mC(x). This gives us:

mD(x)

mC(x)
= α+ (1 − α)

mC(x)

mC(x)
> α .

A.0.3 Unsafe Approximation of ID (Theorem 3.5)

Theorem A.3. Under the following assumptions:

• C contains a model T0, with p0(x) = 2−|x|s(|x|), with s a
distribution on N which decays polynomially or slower,

• there exists a model-bounded one-way function f for C,
• C is normal, i.e. for some c and all x: κC(x) < |x|+ c

IDC is an unsafe approximation for ID against an adversary Tq
which samples x from p0 and returns xf(x).

Proof.

pq
(
IDC(x,y) − ID(x,y) > k

)
=

p0
(
max

[
κC(x | f(x)), κC(f(x) | x)

]
− max [K(x | f(x)),K(f(x) | x))] > k

)
.

pq
(
|x|− IDC(x,y) > 2k

)
6 p0

(
|x|− κC(x | f(x)) > 2k

)
6 p0

(
|x|− κC(x) > k ∨ κC(x) − κC(x | f(x)) > k

)
6 p0

(
|x|− κC(x) > k

)
+ p0

(
κC(x) − κC(x | f(x)) > k

)
6 2−k + cb−k .

152 PROOFS AND DERIVATIONS

K can invert f(x), so

ID(x,y) = max [K(x | f(x)),K(f(x) | x)] = max [|f∗|, |f∗inv|] < cf

where f∗ and f∗inv are the shortest program to compute f on U
and the shortest program to compute the inverse of f on U re-
spectively.

pq
(
IDC(x,y) − ID(x,y) > k

)
+ pq

(
|x|− IDC(x,y) > k

)
> pq

(
IDC(x,y) − ID(x,y) > k∨ |x|− IDC(x,y) > k

)
> pq (|x|− ID(x,y) > k) > p0 (|x|− cf > k)

=
∑

i>k−cf
s(i) .

Which gives us:

pq
(
IDC(x,y) − ID(x,y) > k

)
> −pq(|x|− IDC > k) +

∑
i>k−|f|

s(i)

> −cb−k +
∑

i>k−|f|
s(i)

> s(k− |f|) − cb−k > c ′s(k) for the right c ′.

Corollary A.1. Under the assumptions of Theorem 3.5, κC(x | y)
is an unsafe approximation for K(x | y) against q.

Proof. Assuming κC is safe, then since max is safety-preserving
(Lemma A.4), IDC should be safe for ID. Since it isn’t, κC cannot
be safe.

A.0.4 Safe Approximation of ID (Theorem 3.6)

Lemma A.3. If q samples x and y independently from models
in C, then κC(x | y) is a 2-safe approximation of − logm(x | y)

against q.

153

Proof. Let q sample x from pr and y from ps.

pq(− logmC(x | y) + logm(x | y) > k)

= pq(m(x | y)/mC(x | y) > 2k)

6 2−kE
[
m(x | y)/mC(x | y)

]
= 2−k

∑
x,y

ps(y)m(x | y)
pr(x)

mC(x | y)

6 c2−k
∑
x,y

ps(y)m(x | y)
mC(x | y)

mC(x | y)

6 c2−k
∑
x,y

ps(y)m(x | y) 6 c2−k .

Sincem and Kmutually dominate, − logmC is 2-safe for K(x | y),
as is κ(x | y).

Lemma A.4. If fa is safe for f against q, and ga is safe for g
against q, then max(fa,ga) is safe for max(f,g) against q.1

Proof. We first partition B into sets Ak and Bk:
Ak = {x : fa(x) − f(x) > k∨ ga − g(x) > k} Since both fa and ga

are safe, we know that pq(Ak) will be bounded above by
the sum of two inverse exponentials in k, which from a
given k0 is itself bounded by an exponential in k.

Bk = {x : fa(x) − f(x) < k∧ ga − g(x) < k} We want to show
that B contains no strings with error over k. If, for a given x
the left and right max functions in max (fa,ga)−max (f,g)
select the outcome from matching functions, and the error
is below k by definition. Assume then, that a different func-
tion is selected on each side. Without loss of generality, we
can say that max(fa,ga) = fa and max(f,g) = g. This
gives us: max(fa,ga) − max(f,g) = fa − g 6 fa − f 6 k.

We now have p(Bk) = 0 and p(Ak) 6 cb−k, from which the
theorem follows.

1We will call such operations safety preserving

154 PROOFS AND DERIVATIONS

Corollary A.2. IDC is a safe approximation of ID against sources
that sample x and y independently from models in C.

A.0.5 Safe approximation of NID (Theorem 3.7)

Lemma A.5. Let f and g be two functions, with fa and ga their
safe approximations against adversary pq. Let h(x) = f(x)/g(x)

and ha(x) = fa(x)/ga(x). Let c > 1 and 0 < ε� 1 be constants
such that pq(fa(x) > c) 6 ε and pq(ga(x) > c) 6 ε. We can
show that for some b > 1 and c > 0

pq

(∣∣∣∣ h(x)ha(x)
− 1
∣∣∣∣ > k

c

)
6 cb−k + 2ε .

Proof. We will first prove the bound from above, using fa’s safety,
and then the bound from below using ga’s safety.

pq

(
h

ha
6 1 −

k

c

)
6 pq

(
h

ha
6 1 −

k

c
& c < fa

)
+ ε

6 pq

(
h

ha
6 1 −

k

fa

)
+ ε

= pq

(
f

fa

ga

g
6 1 −

k

fa

)
+ ε 6 pq

(
f

fa
6 1 −

k

fa

)
+ ε

= pq

(
f+ k

fa
6 1

)
+ ε = pq (fa − f > k) + ε 6 cfbf

−k + ε .

The other bound we prove similarly. Combining the two, we get

pq (h/ha /∈ (k/c− 1, k/c+ 1)) 6 cfbf−k + cgbg−k + 2ε

6 c ′b ′−k + 2ε .

Theorem 3.7 follows as a corollary.

Chapter 4

Lemma A.6 (Invariance of function complexity). Let ψ and η be
any two acceptable numberings Let f be any partial computable
function. There exists a constant c independent of f such that∣∣CK,ψ(f) − CK,η(f)

∣∣ 6 c and
∣∣CC,ψ(f) − CC,η(f)

∣∣ 6 c .

155

Proof. Let g(i) be the function such that ψi = ηg(i).

CC,ψ(f) = min
{
CC,ψ(i) : ψi = f

}
> min

{
CC,η(i) : ψi = f

}
− c

= min
{
CC,η(i) : ηg(i) = f

}
− c

= min
{
CC,η(g(i)) : ηg(i) = f

}
− c ′

> min
{
CC,η(j) : ηj = f

}
− c ′ = CC,η(f).

Reverseψ and η for the opposite inequality. The same proof holds
for CK.

Chapter 5

Confidence Intervals for the Degree-Sequence Model As men-
tioned in the body of the text, even with the highly optimized im-
plementations described in [42] and [54] sampling can be slow
for large graphs. In our implementation, a modern day laptop
can take several minutes to produce a single sample for a ran-
dom graph with 104 nodes and 105 links. However, we are not
interested in precision beyond several orders of magnitude, so
if we have a reliable method for determining confidence inter-
vals, we can use those to provide us with safe bounds. Since
we are dealing with a log-normal source, we cannot simply use
twice the standard error of the mean to approximate our error
bars. We will use the parametric bootstrap procedure provided
in [10, 96]. To substantiate this method, we test the coverage of
the two-sided symmetric confidence interval on three datasets.
We proceed as follows: first we estimate the true value of |GD|
with the ML estimator, using 106 samples. Call this value g. We
use this as our gold standard. We then sample a small number
(5, 10, 20) of graphs and their associated probabilities. Using
the bootstrap method we construct a two-sided symmetric con-
fidence interval with α = 0.05 on this sample. We repeat the
procedure of sampling data and constructing an interval 5000
times and report the proportion of times g was inside the confi-
dence interval. If the bootstrap method is accurate, the resulting
value should be close to 0.95. We use the following datasets:

156 PROOFS AND DERIVATIONS

5 samples 10 samples 20 samples
cattle 0.93 511 (379) 0.94 194 (94.6) 0.94 107 (35.3)

revolution 0.89 147 (120) 0.92 59.3 (29.2) 0.93 33.5 (11.3)
random 0.91 108 (97.0) 0.94 44.7 (24.5) 0.94 25.3 (9.44)

Table A.1: Coverage and interval length at α = 0.05 for three
small datasets. The coverage is the number of times the true
value g was contained in the interval, over 5000 trials. The
length is the mean length of these intervals in bits. The standard
deviation is given in parentheses.

cattle Observed dominance behaviors between cows. A directed
graph with 28 nodes, and 217 links. [82, 4]

revolution Affiliations of 136 people to 5 organizations encoded
as a bipartite graph. 141 nodes and 160 links. [3]

random A simple undirected random graph of 50 nodes,with
each pair of distinct nodes connected with probability 0.5.

As Table A.1 shows, this method becomes relatively reliable at
around 10 samples, although the intervals are quite large at that
sample size.

Now, when we use LDS as a base model in Lmotif, the intractable
value |GD| occurs in two places: the encoding of the subgraph,
and the encoding of the template graph. Since we use our es-
timator for both, we must be careful to end up with a correct
confidence interval for the resulting motif code. Let D ′ be the
degree sequence of the subgraph, and D be the degree sequence
of the template. Then, we can split the total codelength into
three components: log |GD′ |, log |GD| and R. R is the sum of all
parts of the code that we can compute exactly, including the sizes
and sequences of the motif and template graph (i.e. everything
but log |GD′ | and log |GD|). The total codelength is described by
log |GD′ |+log |GD|+R, where the first two terms require the use of
the estimator. Let Qm and Qh be random variables representing
the inverse probability of graphs sampled from the importance
sampling algorithm, for the degree sequence of the motif and the
template graph respectively. In other words, the true codelength

157

for the motif code is:

logEQm + logEQh + R

= logEQmEQh + R

= logE[QmQh] + R

where the last line follows from the fact Qm and Qh are inde-
pendent. So to get a correct confidence interval, we can take the
same number of samples of bothQm andQh, multiply their prob-
abilities, and perform the bootstrap analysis on the list of these
multiplied probabilities (since we are summing the logarithms of
log-normally distributed variables, the result is log-normally dis-
tributed as well).

Chapter 6

A.0.6 Derivations

Transforming a generic spherical MVN by a similitude can be cast
as the transformation of N0 by two similitudes:

ft,R,s(Nt0,s0
2I)(x)

= ft,R,s(ft0,R0,s0(N0))(x) = fsRt0+t,RR0,ss0(N0)(x)

= (ss0)
−HN0

(
1
ss0
R0
TRTx−

s

ss0
R0
T t0 −

1
ss0
R0
TRT t

)

= (ss0)
−HN0

(
1
ss0
x−

1
s0
Rt0 −

1
ss0
t

)

= (ss0)
−HN0

(
1
ss0
R0
TRTx−

s

ss0
R0
T t0 −

1
ss0
R0
TRT t

)

= (2π)−
H
2 (ss0)

−H exp
[
−

1
2s0

2s2 ‖x− t− sRt0‖
2
]

158 PROOFS AND DERIVATIONS

The depth v and weights w For the depth priors v, the Q-
function, with constant terms omitted, reduces to:

Q(v) =
∑
i,j

Pij ln v|cj|

=
∑

d∈[0,D]

∑
j:|cj|=d

Pij ln vd =
∑

d∈[0,D]

 ∑
j:|cj|=d

Pij

 ln vd

=
∑

d∈[0,D]

pd ln vd with pd =
∑

j:|cj|=d

Pij .

For v, we have the additional constraint that
∑
d vd = 1, which

we can take into consideration with Lagrange multipliers, giv-
ing us the objective function L(v, λ) = pd/vd − λ

∑
d vd − λ.

We differentiate and set equal to zero, giving us the equations
pd/vd − λ = 0 amd

∑
i vi − 1 = 0. Solving these gives us:

v̂d =
pd∑
i pi

.

Finding wk follows the same principle as the depths. The Q-
function reduces to:

Q(w) =
∑
k

pk lnwk .

Using Lagrange multipliers to incorporate the constraint that∑
iwi = 1, we find

ŵk = pk/
∑
i

pi .

159

The translations tk The optimal translation can be found by
straightforward differentiation:

∂Q(tk)

∂tk
= −
∑
i,j

Pkij
1

sj2sk2

‖yi − tk − skRktj‖
2

∂tk

=
∑
i,j

Pkij
1

sj2sk2 (yi − tk − skRktj)
T .

This sum represents a row vector, which we transpose to get a
column vector, and set equal to zero to get t̂k:

0 =
1
sk2

∑
i,j

Pkijsj
−2yi −

∑
i,j

Pkijsj
−2tk − skRk

∑
i,j

Pkijsj
−2tj

 .

Let Z = diag(s1
−2, . . . , sM−2), we can then rewrite to matrix

notation:

t̂k =
YPkZ1 − skRk T (P

kZ)T1
1TPkZ1

.

The rotations Rk

Q(Rk) = −
1
2

∑
i,j

Pkij
1

sj2sk2 ‖yi − tk − skRktj‖
2

= −
1
2

∑
i,j

Pkijsj
−2
∥∥(yi − yk)− skRk (tj − tk)∥∥2

.

Let yki = yi − y
k and tkj = tj − t

k, i.e. mean-centered versions
of the data points and the component means. Let Yk and Tk be
the corresponding matrices with these vectors as columns. We

160 PROOFS AND DERIVATIONS

multiply out the inner product to get

Q(Rk) = −
1
2

∑
i,j

Pkijsj
−2
[
yki
T
yki − 2skyki

T
Rkt

k
j + t

k
j

T
tkj

]

from which we remove the terms and global factors that are in-
dependent of Rk:

Q(Rk) =
∑
i,j

Pkij sj
−2 yki

T
Rkt

k
j .

Which in matrix notation becomes:

Q(Rk) = tr((PkZ)TYk
T
RkT

k) = tr(TkZPk
T
Yk
T
Rk)

= tr([YkPkZTk
T
]TRk) .

Where we use the fact that tr(ATB) =
∑
i,j(A ◦B)ij and the fact

that the trace is invariant under cyclic permutations.

The scaling sk We derive the scaling by filling in t̂k and solving
for ∂Q(sk)/∂sk.

∂Q(sk)

∂sk
=

−pkH ln sk − 1
2

∑
i,j(P

kZ)ijsk
−2 ‖yi − tk − skRktj‖

2

∂sk
∂Q(sk)

∂sk
= −pkHsk

−1 −
1
2

∑
i,j

(PkZ)ij

(
−2sk−3yki

T
yki + 2s−2

k y
k
i

T
Rkt

k
j

)

= −pkHsk
−1 + sk

−3
∑
i,j

(PkZ)ijsk
−3yki

T
yki

− s−1
k

∑
i,j

(PkZ)ijs
−2
k y

k
i

T
Rkt

k
j .

In matrix notation:

0 = sk
−2tr(Y

kT

d(PkZ1)Yk) + sk−1tr(TkZPk
T
Tk
T
Rk) − p

kH .

B · FRACTAL EXPERIMENTS: FULL RESULTS

In Chapter 6, we showed that our algorithm could construct frac-
tal models for various datasets. However, we selected the best
result from 100 trials. To give an indication of how likely the
algorithm is to converge to such models, we provide all 100 re-
sults for all trials. For each trial, we show a single image that
represents the model after 300 iterations.

162 FRACTAL EXPERIMENTS: FULL RESULTS

cloud

163

coast

164 FRACTAL EXPERIMENTS: FULL RESULTS

disc

165

koch2

166 FRACTAL EXPERIMENTS: FULL RESULTS

koch4

167

romanesco

168 FRACTAL EXPERIMENTS: FULL RESULTS

sierpinski

169

sierpinski, unequal weights

170 FRACTAL EXPERIMENTS: FULL RESULTS

sierpinski, with 2 components

171

sphere

CHANGES MADE AFTER ACCEPTANCE

The following non-cosmetic changes were made to the manuscript
after acceptance by the committee:

• On page 4 a claim was corrected. The original pargraph
suggested that no inference is possible on models outside
the class of Turing machines.

• On page 37, the motivation for the definition of safe ap-
proximation was extended.

• On page 40 we emphasized that the difference between KC

and − logmC can be inflated arbitrarily.
• On page 87, a mistake was fixed in the definition of Bdeg(D).

SIKS DISSERTATION SERIES

1998-1 Johan van den Akker (CWI) DEGAS
- An Active, Temporal Database of
Autonomous Objects

1998-2 Floris Wiesman (UM) Information
Retrieval by Graphically Browsing
Meta-Information

1998-3 Ans Steuten (TUD) A Contribution
to the Linguistic Analysis of Business
Conversations within the
Language/Action Perspective

1998-4 Dennis Breuker (UM) Memory
versus Search in Games

1998-5 E.W.Oskamp (RUL)
Computerondersteuning bij
Straftoemeting

1999-1 Mark Sloof (VU) Physiology of
Quality Change Modelling;
Automated modelling of Quality
Change of Agricultural Products

1999-2 Rob Potharst (EUR) Classification
using decision trees and neural nets

1999-3 Don Beal (UM) The Nature of
Minimax Search

1999-4 Jacques Penders (UM) The practical
Art of Moving Physical Objects

1999-5 Aldo de Moor (KUB) Empowering
Communities: A Method for the
Legitimate User-Driven Specification
of Network Information Systems

1999-6 Niek J.E. Wijngaards (VU)
Re-design of compositional systems

1999-7 David Spelt (UT) Verification
support for object database design

1999-8 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and
Analysis of a Multi-Agent Mechanism
for Discrete Reallocation.

2000-1 Frank Niessink (VU) Perspectives on
Improving Software Maintenance

2000-2 Koen Holtman (TUE) Prototyping
of CMS Storage Management

2000-3 Carolien M.T. Metselaar (UvA)
Sociaal-organisatorische gevolgen
van kennistechnologie; een
procesbenadering en actorperspectief.

2000-4 Geert de Haan (VU) ETAG, A
Formal Model of Competence
Knowledge for User Interface Design

2000-5 Ruud van der Pol (UM)
Knowledge-based Query Formulation
in Information Retrieval.

2000-6 Rogier van Eijk (UU) Programming
Languages for Agent Communication

2000-7 Niels Peek (UU) Decision-theoretic
Planning of Clinical Patient
Management

2000-8 Veerle Coup (EUR) Sensitivity
Analyis of Decision-Theoretic
Networks

2000-9 Florian Waas (CWI) Principles of
Probabilistic Query Optimization

2000-10 Niels Nes (CWI) Image Database
Management System Design
Considerations, Algorithms and
Architecture

2000-11 Jonas Karlsson (CWI) Scalable
Distributed Data Structures for
Database Management

2001-1 Silja Renooij (UU) Qualitative
Approaches to Quantifying
Probabilistic Networks

2001-2 Koen Hindriks (UU) Agent
Programming Languages:
Programming with Mental Models

2001-3 Maarten van Someren (UvA)
Learning as problem solving

2001-4 Evgueni Smirnov (UM) Conjunctive
and Disjunctive Version Spaces with
Instance-Based Boundary Sets

2001-5 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia: A
Matter of Style

2001-6 Martijn van Welie (VU) Task-based
User Interface Design

2001-7 Bastiaan Schonhage (VU) Diva:
Architectural Perspectives on
Information Visualization

2001-8 Pascal van Eck (VU) A
Compositional Semantic Structure
for Multi-Agent Systems Dynamics.

2001-9 Pieter Jan ’t Hoen (RUL) Towards
Distributed Development of Large
Object-Oriented Models, Views of
Packages as Classes

2001-10 Maarten Sierhuis (UvA) Modeling
and Simulating Work Practice
BRAHMS: a multiagent modeling
and simulation language for work
practice analysis and design

2001-11 Tom M. van Engers (VUA)
Knowledge Management: The Role of
Mental Models in Business Systems
Design

2002-01 Nico Lassing (VU)
Architecture-Level Modifiability
Analysis

2002-02 Roelof van Zwol (UT) Modelling
and searching web-based document
collections

2002-03 Henk Ernst Blok (UT) Database
Optimization Aspects for Information
Retrieval

2002-04 Juan Roberto Castelo Valdueza
(UU) The Discrete Acyclic Digraph
Markov Model in Data Mining

2002-05 Radu Serban (VU) The Private
Cyberspace Modeling Electronic
Environments inhabited by
Privacy-concerned Agents

2002-06 Laurens Mommers (UL) Applied
legal epistemology; Building a
knowledge-based ontology of the
legal domain

2002-07 Peter Boncz (CWI) Monet: A
Next-Generation DBMS Kernel For
Query-Intensive Applications

2002-08 Jaap Gordijn (VU) Value Based
Requirements Engineering: Exploring
Innovative E-Commerce Ideas

2002-09 Willem-Jan van den Heuvel(KUB)
Integrating Modern Business
Applications with Objectified Legacy
Systems

2002-10 Brian Sheppard (UM) Towards
Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU)
Agent Based Modelling of Dynamics:
Biological and Organisational
Applications

2002-12 Albrecht Schmidt (UvA)
Processing XML in Database Systems

2002-13 Hongjing Wu (TUE) A Reference
Architecture for Adaptive
Hypermedia Applications

2002-14 Wieke de Vries (UU) Agent
Interaction: Abstract Approaches to
Modelling, Programming and
Verifying Multi-Agent Systems

2002-15 Rik Eshuis (UT) Semantics and
Verification of UML Activity
Diagrams for Workflow Modelling

2002-16 Pieter van Langen (VU) The
Anatomy of Design: Foundations,
Models and Applications

2002-17 Stefan Manegold (UvA)
Understanding, Modeling, and
Improving Main-Memory Database
Performance

2003-01 Heiner Stuckenschmidt (VU)
Ontology-Based Information Sharing
in Weakly Structured Environments

2003-02 Jan Broersen (VU) Modal Action
Logics for Reasoning About Reactive
Systems

2003-03 Martijn Schuemie (TUD)
Human-Computer Interaction and
Presence in Virtual Reality Exposure
Therapy

2003-04 Milan Petkovic (UT)

Content-Based Video Retrieval
Supported by Database Technology

2003-05 Jos Lehmann (UvA) Causation in
Artificial Intelligence and Law - A
modelling approach

2003-06 Boris van Schooten (UT)
Development and specification of
virtual environments

2003-07 Machiel Jansen (UvA) Formal
Explorations of Knowledge Intensive
Tasks

2003-08 Yongping Ran (UM) Repair Based
Scheduling

2003-09 Rens Kortmann (UM) The
resolution of visually guided
behaviour

2003-10 Andreas Lincke (UvT) Electronic
Business Negotiation: Some
experimental studies on the
interaction between medium,
innovation context and culture

2003-11 Simon Keizer (UT) Reasoning
under Uncertainty in Natural
Language Dialogue using Bayesian
Networks

2003-12 Roeland Ordelman (UT) Dutch
speech recognition in multimedia
information retrieval

2003-13 Jeroen Donkers (UM) Nosce
Hostem - Searching with Opponent
Models

2003-14 Stijn Hoppenbrouwers (KUN)
Freezing Language:
Conceptualisation Processes across
ICT-Supported Organisations

2003-15 Mathijs de Weerdt (TUD) Plan
Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI)
Feature Grammar Systems -
Incremental Maintenance of Indexes
to Digital Media Warehouses

2003-17 David Jansen (UT) Extensions of
Statecharts with Probability, Time,
and Stochastic Timing

2003-18 Levente Kocsis (UM) Learning
Search Decisions

2004-01 Virginia Dignum (UU) A Model for
Organizational Interaction: Based on
Agents, Founded in Logic

2004-02 Lai Xu (UvT) Monitoring
Multi-party Contracts for E-business

2004-03 Perry Groot (VU) A Theoretical
and Empirical Analysis of
Approximation in Symbolic Problem
Solving

2004-04 Chris van Aart (UvA)
Organizational Principles for
Multi-Agent Architectures

2004-05 Viara Popova (EUR) Knowledge
discovery and monotonicity

2004-06 Bart-Jan Hommes (TUD) The
Evaluation of Business Process
Modeling Techniques

2004-07 Elise Boltjes (UM) Voorbeeldig
onderwijs; voorbeeldgestuurd
onderwijs, een opstap naar abstract
denken, vooral voor meisjes

2004-08 Joop Verbeek(UM) Politie en de
Nieuwe Internationale
Informatiemarkt, Grensregionale
politiële gegevensuitwisseling en
digitale expertise

2004-09 Martin Caminada (VU) For the
Sake of the Argument; explorations
into argument-based reasoning

2004-10 Suzanne Kabel (UvA)
Knowledge-rich indexing of
learning-objects

2004-11 Michel Klein (VU) Change
Management for Distributed
Ontologies

2004-12 The Duy Bui (UT) Creating
emotions and facial expressions for
embodied agents

2004-13 Wojciech Jamroga (UT) Using
Multiple Models of Reality: On
Agents who Know how to Play

2004-14 Paul Harrenstein (UU) Logic in
Conflict. Logical Explorations in
Strategic Equilibrium

2004-15 Arno Knobbe (UU)
Multi-Relational Data Mining

2004-16 Federico Divina (VU) Hybrid
Genetic Relational Search for
Inductive Learning

2004-17 Mark Winands (UM) Informed
Search in Complex Games

2004-18 Vania Bessa Machado (UvA)
Supporting the Construction of
Qualitative Knowledge Models

2004-19 Thijs Westerveld (UT) Using
generative probabilistic models for
multimedia retrieval

2004-20 Madelon Evers (Nyenrode)
Learning from Design: facilitating
multidisciplinary design teams

2005-01 Floor Verdenius (UvA)
Methodological Aspects of Designing
Induction-Based Applications

2005-02 Erik van der Werf (UM)) AI
techniques for the game of Go

2005-03 Franc Grootjen (RUN) A
Pragmatic Approach to the
Conceptualisation of Language

2005-04 Nirvana Meratnia (UT) Towards
Database Support for Moving Object
data

2005-05 Gabriel Infante-Lopez (UvA)
Two-Level Probabilistic Grammars for
Natural Language Parsing

2005-06 Pieter Spronck (UM) Adaptive
Game AI

2005-07 Flavius Frasincar (TUE)
Hypermedia Presentation Generation
for Semantic Web Information
Systems

2005-08 Richard Vdovjak (TUE) A
Model-driven Approach for Building
Distributed Ontology-based Web
Applications

2005-09 Jeen Broekstra (VU) Storage,
Querying and Inferencing for
Semantic Web Languages

2005-10 Anders Bouwer (UvA) Explaining
Behaviour: Using Qualitative
Simulation in Interactive Learning
Environments

2005-11 Elth Ogston (VU) Agent Based
Matchmaking and Clustering - A
Decentralized Approach to Search

2005-12 Csaba Boer (EUR) Distributed
Simulation in Industry

2005-13 Fred Hamburg (UL) Een
Computermodel voor het
Ondersteunen van
Euthanasiebeslissingen

2005-14 Borys Omelayenko (VU)
Web-Service configuration on the
Semantic Web; Exploring how
semantics meets pragmatics

2005-15 Tibor Bosse (VU) Analysis of the
Dynamics of Cognitive Processes

2005-16 Joris Graaumans (UU) Usability of
XML Query Languages

2005-17 Boris Shishkov (TUD) Software
Specification Based on Re-usable
Business Components

2005-18 Danielle Sent (UU) Test-selection
strategies for probabilistic networks

2005-19 Michel van Dartel (UM) Situated
Representation

2005-20 Cristina Coteanu (UL) Cyber
Consumer Law, State of the Art and
Perspectives

2005-21 Wijnand Derks (UT) Improving
Concurrency and Recovery in
Database Systems by Exploiting
Application Semantics

2006-01 Samuil Angelov (TUE)
Foundations of B2B Electronic
Contracting

2006-02 Cristina Chisalita (VU) Contextual
issues in the design and use of
information technology in
organizations

2006-03 Noor Christoph (UvA) The role of
metacognitive skills in learning to
solve problems

2006-04 Marta Sabou (VU) Building Web
Service Ontologies

2006-05 Cees Pierik (UU) Validation
Techniques for Object-Oriented Proof
Outlines

2006-06 Ziv Baida (VU) Software-aided
Service Bundling - Intelligent
Methods & Tools for Graphical
Service Modeling

2006-07 Marko Smiljanic (UT) XML
schema matching – balancing

efficiency and effectiveness by means
of clustering

2006-08 Eelco Herder (UT) Forward, Back
and Home Again - Analyzing User
Behavior on the Web

2006-09 Mohamed Wahdan (UM)
Automatic Formulation of the
Auditor’s Opinion

2006-10 Ronny Siebes (VU) Semantic
Routing in Peer-to-Peer Systems

2006-11 Joeri van Ruth (UT) Flattening
Queries over Nested Data Types

2006-12 Bert Bongers (VU) Interactivation
- Towards an e-cology of people, our
technological environment, and the
arts

2006-13 Henk-Jan Lebbink (UU) Dialogue
and Decision Games for Information
Exchanging Agents

2006-14 Johan Hoorn (VU) Software
Requirements: Update, Upgrade,
Redesign - towards a Theory of
Requirements Change

2006-15 Rainer Malik (UU) CONAN: Text
Mining in the Biomedical Domain

2006-16 Carsten Riggelsen (UU)
Approximation Methods for Efficient
Learning of Bayesian Networks

2006-17 Stacey Nagata (UU) User
Assistance for Multitasking with
Interruptions on a Mobile Device

2006-18 Valentin Zhizhkun (UvA) Graph
transformation for Natural Language
Processing

2006-19 Birna van Riemsdijk (UU)
Cognitive Agent Programming: A
Semantic Approach

2006-20 Marina Velikova (UvT) Monotone
models for prediction in data mining

2006-21 Bas van Gils (RUN) Aptness on the
Web

2006-22 Paul de Vrieze (RUN) Fundaments
of Adaptive Personalisation

2006-23 Ion Juvina (UU) Development of
Cognitive Model for Navigating on
the Web

2006-24 Laura Hollink (VU) Semantic
Annotation for Retrieval of Visual
Resources

2006-25 Madalina Drugan (UU)
Conditional log-likelihood MDL and
Evolutionary MCMC

2006-26 Vojkan Mihajlović (UT) Score
Region Algebra: A Flexible
Framework for Structured
Information Retrieval

2006-27 Stefano Bocconi (CWI) Vox
Populi: generating video
documentaries from semantically
annotated media repositories

2006-28 Borkur Sigurbjornsson (UvA)
Focused Information Access using
XML Element Retrieval

2007-01 Kees Leune (UvT) Access Control
and Service-Oriented Architectures

2007-02 Wouter Teepe (RUG) Reconciling
Information Exchange and
Confidentiality: A Formal Approach

2007-03 Peter Mika (VU) Social Networks
and the Semantic Web

2007-04 Jurriaan van Diggelen (UU)
Achieving Semantic Interoperability
in Multi-agent Systems: a
dialogue-based approach

2007-05 Bart Schermer (UL) Software
Agents, Surveillance, and the Right to
Privacy: a Legislative Framework for
Agent-enabled Surveillance

2007-06 Gilad Mishne (UvA) Applied Text
Analytics for Blogs

2007-07 Natasa Jovanovic’ (UT) To Whom
It May Concern - Addressee
Identification in Face-to-Face
Meetings

2007-08 Mark Hoogendoorn (VU)
Modeling of Change in Multi-Agent
Organizations

2007-09 David Mobach (VU) Agent-Based
Mediated Service Negotiation

2007-10 Huib Aldewereld (UU) Autonomy
vs. Conformity: an Institutional
Perspective on Norms and Protocols

2007-11 Natalia Stash (TUE) Incorporating
Cognitive/Learning Styles in a
General-Purpose Adaptive
Hypermedia System

2007-12 Marcel van Gerven (RUN)
Bayesian Networks for Clinical
Decision Support: A Rational
Approach to Dynamic
Decision-Making under Uncertainty

2007-13 Rutger Rienks (UT) Meetings in
Smart Environments; Implications of
Progressing Technology

2007-14 Niek Bergboer (UM)
Context-Based Image Analysis

2007-15 Joyca Lacroix (UM) NIM: a
Situated Computational Memory
Model

2007-16 Davide Grossi (UU) Designing
Invisible Handcuffs. Formal
investigations in Institutions and
Organizations for Multi-agent
Systems

2007-17 Theodore Charitos (UU)
Reasoning with Dynamic Networks in
Practice

2007-18 Bart Orriens (UvT) On the
development an management of
adaptive business collaborations

2007-19 David Levy (UM) Intimate
relationships with artificial partners

2007-20 Slinger Jansen (UU) Customer
Configuration Updating in a
Software Supply Network

2007-21 Karianne Vermaas (UU) Fast

diffusion and broadening use: A
research on residential adoption and
usage of broadband internet in the
Netherlands between 2001 and 2005

2007-22 Zlatko Zlatev (UT) Goal-oriented
design of value and process models
from patterns

2007-23 Peter Barna (TUE) Specification of
Application Logic in Web Information
Systems

2007-24 Georgina Ramı́rez Camps (CWI)
Structural Features in XML Retrieval

2007-25 Joost Schalken (VU) Empirical
Investigations in Software Process
Improvement

2008-01 Katalin Boer-Sorbán (EUR)
Agent-Based Simulation of Financial
Markets: A modular,continuous-time
approach

2008-02 Alexei Sharpanskykh (VU) On
Computer-Aided Methods for
Modeling and Analysis of
Organizations

2008-03 Vera Hollink (UvA) Optimizing
hierarchical menus: a usage-based
approach

2008-04 Ander de Keijzer (UT)
Management of Uncertain Data -
towards unattended integration

2008-05 Bela Mutschler (UT) Modeling
and simulating causal dependencies
on process-aware information
systems from a cost perspective

2008-06 Arjen Hommersom (RUN) On the
Application of Formal Methods to
Clinical Guidelines, an Artificial
Intelligence Perspective

2008-07 Peter van Rosmalen (OU)
Supporting the tutor in the design
and support of adaptive e-learning

2008-08 Janneke Bolt (UU) Bayesian
Networks: Aspects of Approximate
Inference

2008-09 Christof van Nimwegen (UU) The
paradox of the guided user:
assistance can be counter-effective

2008-10 Wauter Bosma (UT) Discourse
oriented summarization

2008-11 Vera Kartseva (VU) Designing
Controls for Network Organizations:
A Value-Based Approach

2008-12 Jozsef Farkas (RUN) A
Semiotically Oriented Cognitive
Model of Knowledge Representation

2008-13 Caterina Carraciolo (UvA) Topic
Driven Access to Scientific Handbooks

2008-14 Arthur van Bunningen (UT)
Context-Aware Querying; Better
Answers with Less Effort

2008-15 Martijn van Otterlo (UT) The
Logic of Adaptive Behavior:
Knowledge Representation and
Algorithms for the Markov Decision

Process Framework in First-Order
Domains.

2008-16 Henriette van Vugt (VU)
Embodied agents from a user’s
perspective

2008-17 Martin Op ’t Land (TUD) Applying
Architecture and Ontology to the
Splitting and Allying of Enterprises

2008-18 Guido de Croon (UM) Adaptive
Active Vision

2008-19 Henning Rode (UT) From
Document to Entity Retrieval:
Improving Precision and Performance
of Focused Text Search

2008-20 Rex Arendsen (UvA) Geen bericht,
goed bericht. Een onderzoek naar de
effecten van de introductie van
elektronisch berichtenverkeer met de
overheid op de administratieve lasten
van bedrijven

2008-21 Krisztian Balog (UvA) People
Search in the Enterprise

2008-22 Henk Koning (UU)
Communication of IT-Architecture

2008-23 Stefan Visscher (UU) Bayesian
network models for the management
of ventilator-associated pneumonia

2008-24 Zharko Aleksovski (VU) Using
background knowledge in ontology
matching

2008-25 Geert Jonker (UU) Efficient and
Equitable Exchange in Air Traffic
Management Plan Repair using
Spender-signed Currency

2008-26 Marijn Huijbregts (UT)
Segmentation, Diarization and
Speech Transcription: Surprise Data
Unraveled

2008-27 Hubert Vogten (OU) Design and
Implementation Strategies for IMS
Learning Design

2008-28 Ildiko Flesch (RUN) On the Use of
Independence Relations in Bayesian
Networks

2008-29 Dennis Reidsma (UT) Annotations
and Subjective Machines - Of
Annotators, Embodied Agents, Users,
and Other Humans

2008-30 Wouter van Atteveldt (VU)
Semantic Network Analysis:
Techniques for Extracting,
Representing and Querying Media
Content

2008-31 Loes Braun (UM) Pro-Active
Medical Information Retrieval

2008-32 Trung H. Bui (UT) Toward
Affective Dialogue Management using
Partially Observable Markov Decision
Processes

2008-33 Frank Terpstra (UvA) Scientific
Workflow Design; theoretical and
practical issues

2008-34 Jeroen de Knijf (UU) Studies in

Frequent Tree Mining
2008-35 Ben Torben Nielsen (UvT)

Dendritic morphologies: function
shapes structure

2009-01 Rasa Jurgelenaite (RUN)
Symmetric Causal Independence
Models

2009-02 Willem Robert van Hage (VU)
Evaluating Ontology-Alignment
Techniques

2009-03 Hans Stol (UvT) A Framework for
Evidence-based Policy Making Using
IT

2009-04 Josephine Nabukenya (RUN)
Improving the Quality of
Organisational Policy Making using
Collaboration Engineering

2009-05 Sietse Overbeek (RUN) Bridging
Supply and Demand for Knowledge
Intensive Tasks - Based on
Knowledge, Cognition, and Quality

2009-06 Muhammad Subianto (UU)
Understanding Classification

2009-07 Ronald Poppe (UT) Discriminative
Vision-Based Recovery and
Recognition of Human Motion

2009-08 Volker Nannen (VU) Evolutionary
Agent-Based Policy Analysis in
Dynamic Environments

2009-09 Benjamin Kanagwa (RUN) Design,
Discovery and Construction of
Service-oriented Systems

2009-10 Jan Wielemaker (UvA) Logic
programming for
knowledge-intensive interactive
applications

2009-11 Alexander Boer (UvA) Legal
Theory, Sources of Law & the
Semantic Web

2009-12 Peter Massuthe (TUE,
Humboldt-Universitaet zu Berlin)
perating Guidelines for Services

2009-13 Steven de Jong (UM) Fairness in
Multi-Agent Systems

2009-14 Maksym Korotkiy (VU) From
ontology-enabled services to
service-enabled ontologies (making
ontologies work in e-science with
ONTO-SOA)

2009-15 Rinke Hoekstra (UvA) Ontology
Representation—Design Patterns and
Ontologies that Make Sense

2009-16 Fritz Reul (UvT) New
Architectures in Computer Chess

2009-17 Laurens van der Maaten (UvT)
Feature Extraction from Visual Data

2009-18 Fabian Groffen (CWI) Armada, An
Evolving Database System

2009-19 Valentin Robu (CWI) Modeling
Preferences, Strategic Reasoning and
Collaboration in Agent-Mediated
Electronic Markets

2009-20 Bob van der Vecht (UU)

Adjustable Autonomy: Controling
Influences on Decision Making

2009-21 Stijn Vanderlooy (UM) Ranking
and Reliable Classification

2009-22 Pavel Serdyukov (UT) Search For
Expertise: Going beyond direct
evidence

2009-23 Peter Hofgesang (VU) Modelling
Web Usage in a Changing
Environment

2009-24 Annerieke Heuvelink (VUA)
Cognitive Models for Training
Simulations

2009-25 Alex van Ballegooij (CWI) ”RAM:
Array Database Management
through Relational Mapping”

2009-26 Fernando Koch (UU) An
Agent-Based Model for the
Development of Intelligent Mobile
Services

2009-27 Christian Glahn (OU) Contextual
Support of social Engagement and
Reflection on the Web

2009-28 Sander Evers (UT) Sensor Data
Management with Probabilistic
Models

2009-29 Stanislav Pokraev (UT)
Model-Driven Semantic Integration
of Service-Oriented Applications

2009-30 Marcin Zukowski (CWI)
Balancing vectorized query execution
with bandwidth-optimized storage

2009-31 Sofiya Katrenko (UvA) A Closer
Look at Learning Relations from Text

2009-32 Rik Farenhorst (VU) and Remco
de Boer (VU) Architectural
Knowledge Management: Supporting
Architects and Auditors

2009-33 Khiet Truong (UT) How Does Real
Affect Affect Affect Recognition In
Speech?

2009-34 Inge van de Weerd (UU)
Advancing in Software Product
Management: An Incremental
Method Engineering Approach

2009-35 Wouter Koelewijn (UL) Privacy en
Politiegegevens; Over
geautomatiseerde normatieve
informatie-uitwisseling

2009-36 Marco Kalz (OUN) Placement
Support for Learners in Learning
Networks

2009-37 Hendrik Drachsler (OUN)
Navigation Support for Learners in
Informal Learning Networks

2009-38 Riina Vuorikari (OU) Tags and
self-organisation: a metadata ecology
for learning resources in a
multilingual context

2009-39 Christian Stahl (TUE,
Humboldt-Universitaet zu Berlin)
Service Substitution – A Behavioral
Approach Based on Petri Nets

2009-40 Stephan Raaijmakers (UvT)
Multinomial Language Learning:
Investigations into the Geometry of
Language

2009-41 Igor Berezhnyy (UvT) Digital
Analysis of Paintings

2009-42 Toine Bogers Recommender
Systems for Social Bookmarking

2009-43 Virginia Nunes Leal Franqueira
(UT) Finding Multi-step Attacks in
Computer Networks using Heuristic
Search and Mobile Ambients

2009-44 Roberto Santana Tapia (UT)
Assessing Business-IT Alignment in
Networked Organizations

2009-45 Jilles Vreeken (UU) Making
Pattern Mining Useful

2009-46 Loredana Afanasiev (UvA)
Querying XML: Benchmarks and
Recursion

2010-01 Matthijs van Leeuwen (UU)
Patterns that Matter

2010-02 Ingo Wassink (UT) Work flows in
Life Science

2010-03 Joost Geurts (CWI) A Document
Engineering Model and Processing
Framework for Multimedia
documents

2010-04 Olga Kulyk (UT) Do You Know
What I Know? Situational Awareness
of Co-located Teams in Multidisplay
Environments

2010-05 Claudia Hauff (UT) Predicting the
Effectiveness of Queries and Retrieval
Systems

2010-06 Sander Bakkes (UvT) Rapid
Adaptation of Video Game AI

2010-07 Wim Fikkert (UT) Gesture
interaction at a Distance

2010-08 Krzysztof Siewicz (UL) Towards
an Improved Regulatory Framework
of Free Software. Protecting user
freedoms in a world of software
communities and eGovernments

2010-09 Hugo Kielman (UL) A Politiele
gegevensverwerking en Privacy, Naar
een effectieve waarborging

2010-10 Rebecca Ong (UL) Mobile
Communication and Protection of
Children

2010-11 Adriaan Ter Mors (TUD) The
world according to MARP:
Multi-Agent Route Planning

2010-12 Susan van den Braak (UU)
Sensemaking software for crime
analysis

2010-13 Gianluigi Folino (RUN) High
Performance Data Mining using
Bio-inspired techniques

2010-14 Sander van Splunter (VU)
Automated Web Service
Reconfiguration

2010-15 Lianne Bodenstaff (UT) Managing

Dependency Relations in
Inter-Organizational Models

2010-16 Sicco Verwer (TUD) Efficient
Identification of Timed Automata,
theory and practice

2010-17 Spyros Kotoulas (VU) Scalable
Discovery of Networked Resources:
Algorithms, Infrastructure,
Applications

2010-18 Charlotte Gerritsen (VU) Caught
in the Act: Investigating Crime by
Agent-Based Simulation

2010-19 Henriette Cramer (UvA) People’s
Responses to Autonomous and
Adaptive Systems

2010-20 Ivo Swartjes (UT) Whose Story Is
It Anyway? How Improv Informs
Agency and Authorship of Emergent
Narrative

2010-21 Harold van Heerde (UT)
Privacy-aware data management by
means of data degradation

2010-22 Michiel Hildebrand (CWI)
End-user Support for Access to
Heterogeneous Linked Data

2010-23 Bas Steunebrink (UU) The Logical
Structure of Emotions

2010-24 Dmytro Tykhonov Designing
Generic and Efficient Negotiation
Strategies

2010-25 Zulfiqar Ali Memon (VU)
Modelling Human-Awareness for
Ambient Agents: A Human
Mindreading Perspective

2010-26 Ying Zhang (CWI) XRPC: Efficient
Distributed Query Processing on
Heterogeneous XQuery Engines

2010-27 Marten Voulon (UL) Automatisch
contracteren

2010-28 Arne Koopman (UU)
Characteristic Relational Patterns

2010-29 Stratos Idreos(CWI) Database
Cracking: Towards Auto-tuning
Database Kernels

2010-30 Marieke van Erp (UvT) Accessing
Natural History - Discoveries in data
cleaning, structuring, and retrieval

2010-31 Victor de Boer (UvA) Ontology
Enrichment from Heterogeneous
Sources on the Web

2010-32 Marcel Hiel (UvT) An Adaptive
Service Oriented Architecture:
Automatically solving
Interoperability Problems

2010-33 Robin Aly (UT) Modeling
Representation Uncertainty in
Concept-Based Multimedia Retrieval

2010-34 Teduh Dirgahayu (UT) Interaction
Design in Service Compositions

2010-35 Dolf Trieschnigg (UT) Proof of
Concept: Concept-based Biomedical
Information Retrieval

2010-36 Jose Janssen (OU) Paving the Way
for Lifelong Learning; Facilitating
competence development through a
learning path specification

2010-37 Niels Lohmann (TUE) Correctness
of services and their composition

2010-38 Dirk Fahland (TUE) From
Scenarios to components

2010-39 Ghazanfar Farooq Siddiqui (VU)
Integrative modeling of emotions in
virtual agents

2010-40 Mark van Assem (VU) Converting
and Integrating Vocabularies for the
Semantic Web

2010-41 Guillaume Chaslot (UM)
Monte-Carlo Tree Search

2010-42 Sybren de Kinderen (VU)
Needs-driven service bundling in a
multi-supplier setting - the
computational e3-service approach

2010-43 Peter van Kranenburg (UU) A
Computational Approach to
Content-Based Retrieval of Folk Song
Melodies

2010-44 Pieter Bellekens (TUE) An
Approach towards Context-sensitive
and User-adapted Access to
Heterogeneous Data Sources,
Illustrated in the Television Domain

2010-45 Vasilios Andrikopoulos (UvT) A
theory and model for the evolution of
software services

2010-46 Vincent Pijpers (VU)
e3alignment: Exploring
Inter-Organizational Business-ICT
Alignment

2010-47 Chen Li (UT) Mining Process
Model Variants: Challenges,
Techniques, Examples

2010-48 Milan Lovric (EUR) Behavioral
Finance and Agent-Based Artificial
Markets

2010-49 Jahn-Takeshi Saito (UM) Solving
difficult game positions

2010-50 Bouke Huurnink (UvA) Search in
Audiovisual Broadcast Archives

2010-51 Alia Khairia Amin (CWI)
Understanding and supporting
information seeking tasks in multiple
sources

2010-52 Peter-Paul van Maanen (VU)
Adaptive Support for
Human-Computer Teams: Exploring
the Use of Cognitive Models of Trust
and Attention

2010-53 Edgar Meij (UvA) Combining
Concepts and Language Models for
Information Access

2011-01 Botond Cseke (RUN) Variational
Algorithms for Bayesian Inference in
Latent Gaussian Models

2011-02 Nick Tinnemeier(UU) Organizing
Agent Organizations. Syntax and

Operational Semantics of an
Organization-Oriented Programming
Language

2011-03 Jan Martijn van der Werf (TUE)
Compositional Design and
Verification of Component-Based
Information Systems

2011-04 Hado van Hasselt (UU) Insights in
Reinforcement Learning; Formal
analysis and empirical evaluation of
temporal-difference learning
algorithms

2011-05 Base van der Raadt (VU)
Enterprise Architecture Coming of
Age - Increasing the Performance of
an Emerging Discipline.

2011-06 Yiwen Wang (TUE)
Semantically-Enhanced
Recommendations in Cultural
Heritage

2011-07 Yujia Cao (UT) Multimodal
Information Presentation for High
Load Human Computer Interaction

2011-08 Nieske Vergunst (UU) BDI-based
Generation of Robust Task-Oriented
Dialogues

2011-09 Tim de Jong (OU) Contextualised
Mobile Media for Learning

2011-10 Bart Bogaert (UvT) Cloud Content
Contention

2011-11 Dhaval Vyas (UT) Designing for
Awareness: An Experience-focused
HCI Perspective

2011-12 Carmen Bratosin (TUE) Grid
Architecture for Distributed Process
Mining

2011-13 Xiaoyu Mao (UvT) Airport under
Control. Multiagent Scheduling for
Airport Ground Handling

2011-14 Milan Lovric (EUR) Behavioral
Finance and Agent-Based Artificial
Markets

2011-15 Marijn Koolen (UvA) The Meaning
of Structure: the Value of Link
Evidence for Information Retrieval

2011-16 Maarten Schadd (UM) Selective
Search in Games of Different
Complexity

2011-17 Jiyin He (UvA) Exploring Topic
Structure: Coherence, Diversity and
Relatedness

2011-18 Mark Ponsen (UM) Strategic
Decision-Making in complex games

2011-19 Ellen Rusman (OU) The Mind ’ s
Eye on Personal Profiles

2011-20 Qing Gu (VU) Guiding
service-oriented software engineering
- A view-based approach

2011-21 Linda Terlouw (TUD)
Modularization and Specification of
Service-Oriented Systems

2011-22 Junte Zhang (UvA) System
Evaluation of Archival Description

and Access
2011-23 Wouter Weerkamp (UvA) Finding

People and their Utterances in Social
Media

2011-24 Herwin van Welbergen (UT)
Behavior Generation for
Interpersonal Coordination with
Virtual Humans On Specifying,
Scheduling and Realizing Multimodal
Virtual Human Behavior

2011-25 Syed Waqar ul Qounain Jaffry
(VU) Analysis and Validation of
Models for Trust Dynamics

2011-26 Matthijs Aart Pontier (VU) Virtual
Agents for Human Communication -
Emotion Regulation and
Involvement-Distance Trade-Offs in
Embodied Conversational Agents and
Robots

2011-27 Aniel Bhulai (VU) Dynamic
website optimization through
autonomous management of design
patterns

2011-28 Rianne Kaptein(UvA) Effective
Focused Retrieval by Exploiting Query
Context and Document Structure

2011-29 Faisal Kamiran (TUE)
Discrimination-aware Classification

2011-30 Egon van den Broek (UT)
Affective Signal Processing (ASP):
Unraveling the mystery of emotions

2011-31 Ludo Waltman (EUR)
Computational and Game-Theoretic
Approaches for Modeling Bounded
Rationality

2011-32 Nees-Jan van Eck (EUR)
Methodological Advances in
Bibliometric Mapping of Science

2011-33 Tom van der Weide (UU) Arguing
to Motivate Decisions

2011-34 Paolo Turrini (UU) Strategic
Reasoning in Interdependence:
Logical and Game-theoretical
Investigations

2011-35 Maaike Harbers (UU) Explaining
Agent Behavior in Virtual Training

2011-36 Erik van der Spek (UU)
Experiments in serious game design:
a cognitive approach

2011-37 Adriana Burlutiu (RUN) Machine
Learning for Pairwise Data,
Applications for Preference Learning
and Supervised Network Inference

2011-38 Nyree Lemmens (UM)
Bee-inspired Distributed
Optimization

2011-39 Joost Westra (UU) Organizing
Adaptation using Agents in Serious
Games

2011-40 Viktor Clerc (VU) Architectural
Knowledge Management in Global
Software Development

2011-41 Luan Ibraimi (UT)

Cryptographically Enforced
Distributed Data Access Control

2011-42 Michal Sindlar (UU) Explaining
Behavior through Mental State
Attribution

2011-43 Henk van der Schuur (UU)
Process Improvement through
Software Operation Knowledge

2011-44 Boris Reuderink (UT) Robust
Brain-Computer Interfaces

2011-45 Herman Stehouwer (UvT)
Statistical Language Models for
Alternative Sequence Selection

2011-46 Beibei Hu (TUD) Towards
Contextualized Information Delivery:
A Rule-based Architecture for the
Domain of Mobile Police Work

2011-47 Azizi Bin Ab Aziz(VU) Exploring
Computational Models for Intelligent
Support of Persons with Depression

2011-48 Mark Ter Maat (UT) Response
Selection and Turn-taking for a
Sensitive Artificial Listening Agent

2011-49 Andreea Niculescu (UT)
Conversational interfaces for
task-oriented spoken dialogues:
design aspects influencing interaction
quality

2012-01 Terry Kakeeto (UvT) Relationship
Marketing for SMEs in Uganda

2012-02 Muhammad Umair(VU)
Adaptivity, emotion, and Rationality
in Human and Ambient Agent Models

2012-03 Adam Vanya (VU) Supporting
Architecture Evolution by Mining
Software Repositories

2012-04 Jurriaan Souer (UU) Development
of Content Management
System-based Web Applications

2012-05 Marijn Plomp (UU) Maturing
Interorganisational Information
Systems

2012-06 Wolfgang Reinhardt (OU)
Awareness Support for Knowledge
Workers in Research Networks

2012-07 Rianne van Lambalgen (VU)
When the Going Gets Tough:
Exploring Agent-based Models of
Human Performance under
Demanding Conditions

2012-08 Gerben de Vries (UvA) Kernel
Methods for Vessel Trajectories

2012-09 Ricardo Neisse (UT) Trust and
Privacy Management Support for
Context-Aware Service Platforms

2012-10 David Smits (TUE) Towards a
Generic Distributed Adaptive
Hypermedia Environment

2012-11 J.C.B. Rantham Prabhakara
(TUE) Process Mining in the Large:
Preprocessing, Discovery, and
Diagnostics

2012-12 Kees van der Sluijs (TUE) Model

Driven Design and Data Integration
in Semantic Web Information
Systems

2012-13 Suleman Shahid (UvT) Fun and
Face: Exploring non-verbal
expressions of emotion during playful
interactions

2012-14 Evgeny Knutov(TUE) Generic
Adaptation Framework for Unifying
Adaptive Web-based Systems

2012-15 Natalie van der Wal (VU) Social
Agents. Agent-Based Modelling of
Integrated Internal and Social
Dynamics of Cognitive and Affective
Processes

2012-16 Fiemke Both (VU) Helping people
by understanding them - Ambient
Agents supporting task execution and
depression treatment

2012-17 Amal Elgammal (UvT) Towards a
Comprehensive Framework for
Business Process Compliance

2012-18 Eltjo Poort (VU) Improving
Solution Architecting Practices

2012-19 Helen Schonenberg (TUE) What’s
Next? Operational Support for
Business Process Execution

2012-20 Ali Bahramisharif (RUN) Covert
Visual Spatial Attention, a Robust
Paradigm for Brain-Computer
Interfacing

2012-21 Roberto Cornacchia (TUD)
Querying Sparse Matrices for
Information Retrieval

2012-22 Thijs Vis (UvT) Intelligence, politie
en veiligheidsdienst: verenigbare
grootheden?

2012-23 Christian Muehl (UT) Toward
Affective Brain-Computer Interfaces:
Exploring the Neurophysiology of
Affect during Human Media
Interaction

2013-01 Viorel Milea (EUR) News
Analytics for Financial Decision
Support

2013-02 Erietta Liarou (CWI)
MonetDB/DataCell: Leveraging the
Column-store Database Technology
for Efficient and Scalable Stream
Processing

2013-03 Szymon Klarman (VU) Reasoning
with Contexts in Description Logics

2013-04 Chetan Yadati(TUD)
Coordinating autonomous planning
and scheduling

2013-05 Dulce Pumareja (UT) Groupware
Requirements Evolutions Patterns

2013-06 Romulo Goncalves(CWI) The
Data Cyclotron: Juggling Data and
Queries for a Data Warehouse
Audience

2013-07 Giel van Lankveld (UvT)
Quantifying Individual Player

Differences
2013-08 Robbert-Jan Merk(VU) Making

enemies: cognitive modeling for
opponent agents in fighter pilot
simulators

2013-09 Fabio Gori (RUN) Metagenomic
Data Analysis: Computational
Methods and Applications

2013-10 Jeewanie Jayasinghe
Arachchige(UvT) A Unified
Modeling Framework for Service
Design.

2013-11 Evangelos Pournaras(TUD)
Multi-level Reconfigurable
Self-organization in Overlay Services

2013-12 Marian Razavian(VU)
Knowledge-driven Migration to
Services

2013-13 Mohammad Safiri(UT) Service
Tailoring: User-centric creation of
integrated IT-based homecare services
to support independent living of
elderly

2013-14 Jafar Tanha (UvA) Ensemble
Approaches to Semi-Supervised
Learning Learning

2013-15 Daniel Hennes (UM) Multiagent
Learning - Dynamic Games and
Applications

2013-16 Eric Kok (UU) Exploring the
practical benefits of argumentation in
multi-agent deliberation

2013-17 Koen Kok (VU) The
PowerMatcher: Smart Coordination
for the Smart Electricity Grid

2013-18 Jeroen Janssens (UvT) Outlier
Selection and One-Class
Classification

2013-19 Renze Steenhuizen (TUD)
Coordinated Multi-Agent Planning
and Scheduling

2013-20 Katja Hofmann (UvA) Fast and
Reliable Online Learning to Rank for
Information Retrieval

2013-21 Sander Wubben (UvT)
Text-to-text generation by
monolingual machine translation

2013-22 Tom Claassen (RUN) Causal
Discovery and Logic

2013-23 Patricio de Alencar Silva(UvT)
Value Activity Monitoring

2013-24 Haitham Bou Ammar (UM)
Automated Transfer in Reinforcement
Learning

2013-25 Agnieszka Anna
Latoszek-Berendsen (UM)
Intention-based Decision Support. A
new way of representing and
implementing clinical guidelines in a
Decision Support System

2013-26 Alireza Zarghami (UT)
Architectural Support for Dynamic
Homecare Service Provisioning

2013-27 Mohammad Huq (UT)
Inference-based Framework
Managing Data Provenance

2013-28 Frans van der Sluis (UT) When
Complexity becomes Interesting: An
Inquiry into the Information
eXperience

2013-29 Iwan de Kok (UT) Listening Heads
2013-30 Joyce Nakatumba (TUE)

Resource-Aware Business Process
Management: Analysis and Support

2013-31 Dinh Khoa Nguyen (UvT)
Blueprint Model and Language for
Engineering Cloud Applications

2013-32 Kamakshi Rajagopal (OUN)
Networking For Learning; The role of
Networking in a Lifelong Learner’s
Professional Development

2013-33 Qi Gao (TUD) User Modeling and
Personalization in the Microblogging
Sphere

2013-34 Kien Tjin-Kam-Jet (UT)
Distributed Deep Web Search

2013-35 Abdallah El Ali (UvA) Minimal
Mobile Human Computer Interaction
Promotor: Prof. dr. L. Hardman
(CWI/UvA)

2013-36 Than Lam Hoang (TUe) Pattern
Mining in Data Streams

2013-37 Dirk Börner (OUN) Ambient
Learning Displays

2013-38 Eelco den Heijer (VU)
Autonomous Evolutionary Art

2013-39 Joop de Jong (TUD) A Method for
Enterprise Ontology based Design of
Enterprise Information Systems

2013-40 Pim Nijssen (UM) Monte-Carlo
Tree Search for Multi-Player Games

2013-41 Jochem Liem (UvA) Supporting
the Conceptual Modelling of Dynamic
Systems: A Knowledge Engineering
Perspective on Qualitative Reasoning

2013-42 Léon Planken (TUD) Algorithms
for Simple Temporal Reasoning

2013-43 Marc Bron (UvA) Exploration and
Contextualization through
Interaction and Concepts

2014-01 Nicola Barile (UU) Studies in
Learning Monotone Models from
Data

2014-02 Fiona Tuliyano (RUN) Combining
System Dynamics with a Domain
Modeling Method

2014-03 Sergio Raul Duarte Torres (UT)
Information Retrieval for Children:
Search Behavior and Solutions

2014-04 Hanna Jochmann-Mannak (UT)
Websites for children: search
strategies and interface design - Three
studies on children’s search
performance and evaluation

2014-05 Jurriaan van Reijsen (UU)
Knowledge Perspectives on Advancing

Dynamic Capability
2014-06 Damian Tamburri (VU)

Supporting Networked Software
Development

2014-07 Arya Adriansyah (TUE) Aligning
Observed and Modeled Behavior

2014-08 Samur Araujo (TUD) Data
Integration over Distributed and
Heterogeneous Data Endpoints

2014-09 Philip Jackson (UvT) Toward
Human-Level Artificial Intelligence:
Representation and Computation of
Meaning in Natural Language

2014-10 Ivan Salvador Razo Zapata (VU)
Service Value Networks

2014-11 Janneke van der Zwaan (TUD)
An Empathic Virtual Buddy for Social
Support

2014-12 Willem van Willigen (VU) Look
Ma, No Hands: Aspects of
Autonomous Vehicle Control

2014-13 Arlette van Wissen (VU)
Agent-Based Support for Behavior
Change: Models and Applications in
Health and Safety Domains

2014-14 Yangyang Shi (TUD) Language
Models With Meta-information

2014-15 Natalya Mogles (VU) Agent-Based
Analysis and Support of Human
Functioning in Complex
Socio-Technical Systems: Applications
in Safety and Healthcare

2014-16 Krystyna Milian (VU) Supporting
trial recruitment and design by
automatically interpreting eligibility
criteria

2014-17 Kathrin Dentler (VU) Computing
healthcare quality indicators
automatically: Secondary Use of
Patient Data and Semantic
Interoperability

2014-18 Mattijs Ghijsen (UvA) Methods
and Models for the Design and Study
of Dynamic Agent Organizations

2014-19 Vinicius Ramos (TUE) Adaptive
Hypermedia Courses: Qualitative and
Quantitative Evaluation and Tool
Support

2014-20 Mena Habib (UT) Named Entity
Extraction and Disambiguation for
Informal Text: The Missing Link

2014-21 Kassidy Clark (TUD) Negotiation
and Monitoring in Open
Environments

2014-22 Marieke Peeters (UU)
Personalized Educational Games -
Developing agent-supported
scenario-based training

2014-23 Eleftherios Sidirourgos
(UvA/CWI) Space Efficient Indexes
for the Big Data Era

2014-24 Davide Ceolin (VU) Trusting
Semi-structured Web Data

2014-25 Martijn Lappenschaar (RUN)
New network models for the analysis
of disease interaction

2014-26 Tim Baarslag (TUD) What to Bid
and When to Stop

2014-27 Rui Jorge Almeida (EUR)
Conditional Density Models
Integrating Fuzzy and Probabilistic
Representations of Uncertainty

2014-28 Anna Chmielowiec (VU)
Decentralized k-Clique Matching

2014-29 Jaap Kabbedijk (UU) Variability
in Multi-Tenant Enterprise Software

2014-30 Peter de Cock (UvT) Anticipating
Criminal Behaviour

2014-31 Leo van Moergestel (UU) Agent
Technology in Agile Multiparallel
Manufacturing and Product Support

2014-32 Naser Ayat (UvA) On Entity
Resolution in Probabilistic Data

2014-33 Tesfa Tegegne (RUN) Service
Discovery in eHealth

2014-34 Christina Manteli(VU) The Effect
of Governance in Global Software
Development: Analyzing Transactive
Memory Systems.

2014-35 Joost van Ooijen (UU) Cognitive
Agents in Virtual Worlds: A
Middleware Design Approach

2014-36 Joos Buijs (TUE) Flexible
Evolutionary Algorithms for Mining
Structured Process Models

2014-37 Maral Dadvar (UT) Experts and
Machines United Against
Cyberbullying

2014-38 Danny Plass-Oude Bos (UT)
Making brain-computer interfaces
better: improving usability through
post-processing.

2014-39 Jasmina Maric (UvT) Web
Communities, Immigration, and
Social Capital

2014-40 Walter Omona (RUN) A
Framework for Knowledge
Management Using ICT in Higher
Education

2014-41 Frederic Hogenboom (EUR)
Automated Detection of Financial
Events in News Text

2014-42 Carsten Eijckhof (CWI/TUD)
Contextual Multidimensional
Relevance Models

2014-43 Kevin Vlaanderen (UU)
Supporting Process Improvement
using Method Increments

2014-44 Paulien Meesters (UvT)
Intelligent Blauw. Met als ondertitel:
Intelligence-gestuurde politiezorg in
gebiedsgebonden eenheden.

2014-45 Birgit Schmitz (OUN) Mobile
Games for Learning: A Pattern-Based
Approach

2014-46 Ke Tao (TUD) Social Web Data

Analytics: Relevance, Redundancy,
Diversity

2014-47 Shangsong Liang (UvA) Fusion
and Diversification in Information
Retrieval

2015-01 Niels Netten (UvA) Machine
Learning for Relevance of
Information in Crisis Response

2015-02 Faiza Bukhsh (UvT) Smart
auditing: Innovative Compliance
Checking in Customs Controls

2015-03 Twan van Laarhoven (RUN)
Machine learning for network data

2015-04 Howard Spoelstra (OUN)
Collaborations in Open Learning
Environments

2015-05 Christoph Bösch(UT)
Cryptographically Enforced Search
Pattern Hiding

2015-06 Farideh Heidari (TUD) Business
Process Quality Computation -
Computing Non-Functional
Requirements to Improve Business
Processes

2015-07 Maria-Hendrike Peetz(UvA)
Time-Aware Online Reputation
Analysis

2015-08 Jie Jiang (TUD) Organizational
Compliance: An agent-based model
for designing and evaluating
organizational interactions

2015-09 Randy Klaassen(UT) HCI
Perspectives on Behavior Change
Support Systems

2015-10 Henry Hermans (OUN) OpenU:
design of an integrated system to
support lifelong learning

2015-11 Yongming Luo(TUE) Designing
algorithms for big graph datasets: A
study of computing bisimulation and
joins

2015-12 Julie M. Birkholz (VU) Modi
Operandi of Social Network
Dynamics: The Effect of Context on
Scientific Collaboration Networks

2015-13 Giuseppe Procaccianti(VU)
Energy-Efficient Software

2015-14 Bart van Straalen (UT) A
cognitive approach to modeling bad
news conversations

2015-15 Klaas Andries de Graaf (VU)
Ontology-based Software
Architecture Documentation

2015-16 Changyun Wei (UT) Cognitive
Coordination for Cooperative
Multi-Robot Teamwork

2015-17 André van Cleeff (UT) Physical
and Digital Security Mechanisms:
Properties, Combinations and
Trade-offs

2015-18 Holger Pirk (CWI) Waste Not,
Want Not! - Managing Relational
Data in Asymmetric Memories

2015-19 Bernardo Tabuenca (OUN)
Ubiquitous Technology for Lifelong
Learners

2015-20 Löıs Vanhée(UU) Using Culture
and Values to Support Flexible
Coordination

2015-21 Sibren Fetter (OUN) Using
Peer-Support to Expand and Stabilize
Online Learning

2015-22 Zhemin Zhu(UT) Co-occurrence
Rate Networks

2015-23 Luit Gazendam (VU) Cataloguer
Support in Cultural Heritage

2015-24 Richard Berendsen (UvA) Finding
People, Papers, and Posts: Vertical
Search Algorithms and Evaluation

2015-25 Steven Woudenberg (UU)
Bayesian Tools for Early Disease
Detection

2015-26 Alexander Hogenboom (EUR)
Sentiment Analysis of Text Guided by
Semantics and Structure

2015-27 Sándor Héman (CWI) Updating

compressed colomn stores
2015-28 Janet Bagorogoza(TiU)

Knowledge Management and High
Performance; The Uganda Financial
Institutions Model for HPO

2015-29 Hendrik Baier (UM) Monte-Carlo
Tree Search Enhancements for
One-Player and Two-Player Domains

2015-30 Kiavash Bahreini(OU) Real-time
Multimodal Emotion Recognition in
E-Learning

2015-31 Yakup Koç (TUD) On the
robustness of Power Grids

2015-32 Jerome Gard(UL) Corporate
Venture Management in SMEs

2015-33 Frederik Schadd (TUD) Ontology
Mapping with Auxiliary Resources

2015-34 Victor de Graaf(UT) Gesocial
Recommender Systems

2015-35 Jungxao Xu (TUD) Affective Body
Language of Humanoid Robots:
Perception and Effects in Human
Robot Interaction

INDEX

absolutely non-stochastic
strings, 62

acceptable numbering, 52
Ackermann function, 63
algorithmic statistics, 31
algorithmic sufficient statistic

strong, 66
anti-motif, 72, 96
arithmetic coding, 76

Bayes factor, 78
Berry paradox, 20
big data, 30

Church-Turing thesis, 17
clique, 77
coarse sophistication, 65
code, 76

bounds on a, 78
codelength function, 76
computable numbers, 15
configuration model, 85

deep strings, 63
degree-sequence model, 85
depth, 63
description language, 7
dimension, 107
Dirichlet-Multinomial

distribution, 82

edgelist model, 88
effective complexity, 66

effective procedure, 13
effectiveness, 5, 7, 13
Entscheidungsproblem, 14
Erdős-Renyi model, 84
evolutionary algorithms, 107
expectation-maximization,

106
algorithm, 110

exploratory analysis, 72, 95

facticity, 55
Fibonacci search, 83
five sigma, 1
fractal, 106
fractal image compression,

107
fractal inverse problem, 107

generic model class, 52
German tank problem, 1
Google, 3
graph, 75

isomorphism, 75
multi-, 75
simple, 75

halting problem, 19
Harry Mulisch, 1
Hausdorff dimension, 107
Higgs boson, 1
Hilbert, David, 14
hypothesis test, 25, 78
hypothesis testing, 95

189

importance sampling, 85
incomputability

of Kolmogorov
complexity, 20

information content, 7
inverse problem, 106

κC, 42
κC, 42
KL divergence, 112
Kolmogorov complexity

incomputability of, 20
model-bounded, 34
resource-bounded, 36,

45
Kraft inequality, 76

Lagrange multipliers, 117,
158

Laplace, Pierre-Simon, 22
Large Hadron Collider, 1
likelihood ratio, 78
limit distribution, 112
log-factor, 91
log-normal distribution, 86
lower semicomputable

semimeasure, 34

Mandelbrot, Benoit, 107
maximum-likelihood

estimator
for the log-normal

distribution, 86
meaningful information,

Vitányi’s, 62
method of moments, 107
minimum description length,

32, 73
model class, 30

Effective, 34
generic, 52
of finite sets, 52
of partial prefix-free

functions, 52
of total functions T, 52
sufficient, 39

model-bounded Kolmogorov
complexity, 32, 34

model-bounded one-way
function, 44

motif code, 80
multigraph, 75
multiple testing, 91
multivariate normal

distribution, 109
MVN, 109

naive sophistication, 64
network motif

code for, 80
network motifs, 72
NID, 43
no-hypercompression

inequality, 40, 72,
78

normalized compression
distance, 31

normalized information
distance, 31, 43

null model, 73
null-model, 72, 78, 95
numbering, 52

acceptable, 52
faithful, 55

one-way function, 44
overfitting, 50, 61
overlap removal, 81

Phaistos disc, 1
π, 30
post-transform, 115
prefix-free code, 33

randomness deficiency, 64
resource-bounded

Kolmogorov
complexity, 32, 36,
45

responsibilities, 110
rigid transformation, 110
rotation matrix, 110

safe approximation, 30, 32,
36

transitivity of, 38
scale-free property, 96
self-similarity, 105, 107
similitude, 110
simple graph, 75
solar system, 3
sophistication, 31, 47

Antunes’, 54
coarse, 65
Koppel and Atlan’s, 53
naive, 64
required properties, 49

strongly algorithmic
sufficient statistic,
66

structure function, 61
SUBDUE, 75
subgraph mining, 74
sufficient model class, 39
symmetry

scaling, 105
translational, 105

The Discovery of Heaven, 1
Turing machine, 4, 33

auxiliary input, 33
definition, 33

Turing, Alan, 14
Twitter, 20
two-part coding, 49, 53

unbiased minimum-variance
estimator, 2

underfitting, 51, 62
universal Turing machine, 17,

33

web graph, 3
Wikipedia, 94
witness, 53

ZIP, 29, 31

	cover
	interior
	titelblad
	thesis
	Introduction
	Setting the stage
	Effectiveness
	Kolmogorov complexity
	The no-hypercompression inequality

	A safe approximation of Kolmogorov complexity
	The two worlds of Kolmogorov complexity
	Turing machines and algorithmic probability
	Model-bounded Kolmogorov complexity
	Safe approximation
	A safe, computable approximation of K
	Approximating normalized information distance
	Discussion

	The problem of sophistication
	Sophistication
	Notation
	Inefficient indices
	Balancing under- and overfitting
	Discussion and conclusion

	Compression as a measure of network motif relevance
	Network Motifs
	Model selection by codelength
	Encoding with motifs
	Null models
	Experiments
	Conclusion

	An EM algorithm for the fractal inverse problem
	Fractals
	The IFS model
	The EM algorithm for IFS models
	Results
	Discussion

	Proofs and derivations
	Fractal experiments: full results

