
Two Problems for Sophistication

Peter Bloem, Steven de Rooij and Pieter Adriaans

Abstract

Kolmogorov complexity measures the amount of information in data, but
does not distinguish structure from noise. Kolmogorov’s definition of the
structure function was the first attempt to measure only the structural in-
formation in data, by measuring the complexity of the smallest model that
allows for optimal compression of the data. Since then, many variations
of this idea have been proposed, for which we use sophistication as an um-
brella term. We describe two fundamental problems with existing proposals,
showing many of them to be unsound. Consequently, we put forward the
view that the problem is fundamental: it may be impossible to objectively
quantify the sophistication.

1 Introduction

Kolmogorov complexity gives us a sound definition of the amount of information
contained in a binary string. It does not, however, capture what most people
would consider complexity. For example, a sequence of a million coin flips will
almost certainly have maximal Kolmogorov complexity, even though there is
nothing complex about flipping a coin repeatedly. Many scholars have defined
additional measures in the spirit of Kolmogorov complexity, aimed at quantify-
ing not all information in a binary string, but only the meaningful. While this
concept has been given many names, we use sophistication as an umbrella term.
In this paper, we investigate two serious problems with sophistication. We con-
clude with two arguments suggesting the problems are fundamental, explaining
our belief that sophistication cannot be defined in a satisfactory manner.

The Kolmogorov complexity C(x) of a binary string x is, informally, the
length of the shortest computer program to print x. This length depends on
the choice of programming language, but, by the invariance theorem [15, Sec-
tion 2.1], only by a constant, independent of x. For sufficiently complex objects,
the choice of programming language becomes irrelevant and Kolmogorov com-
plexity becomes an objective measure. A definition of sophistication S(x) in the
spirit of C(x) should have similar guarantees:

This paper was published at Algorithmic Learning Theory 2015. The published version is avail-
able from www.springerlink.com.

1

1. S(x) should count the bits required for an effective description of the struc-
tural properties of a binary string.

2. An analogue of invariance should hold: there must be strict limits on
how much sophistication can be affected by a change in programming
language.

3. There should be no constant c such that S(x) 6 c for every input x. If so-
phistication is bounded, then knowing its value under one programming
language provides no constraints on its value under another language (ex-
cept it is also bounded).

4. Similarly, there should be no constant c such that |C(x) − S(x)| 6 c for all
x, because then sophistication would be equivalent to Kolmogorov com-
plexity.

There have been many proposals for such a measure, all based on a two-part
code: we encode a model in the first part of the code, which is interpreted as a
representation of x’s structural properties. The model does not fully specify x,
but when combined with the second part of the code, which specifies the noise,
the original string becomes fully determined.1

For any string x, there may be many different two-part codes. The total
length can never be less than the Kolmogorov complexity, but it can come close.
Figure 1 illustrates the principle. The key to sophistication is to take the rep-
resentations that come close to the Kolmogorov complexity, the candidates, and
define the sophistication as the size of the smallest model in this set. However,
for most definitions, we can prove that they fail one of the conditions above.
For others, we cannot prove they conflict with our requirements, but we show
these methods only assign substantial sophistication to strings that require an
enormous amount of processing to construct.

A valid definition of S(x) must contend with two important issues. First, the
details of the way the model is encoded are important. There are two tech-
nically distinct approaches; in one of these one has to deal with the so-called
“nickname problem” that strangely remains unresolved in several publications.
These definitions yield a sophistication that is highly dependent on the chosen
programming language, unless special care is taken, as discussed in Section 3.

The second issue is that of striking the right balance between under- and
overfitting, which we consider in Section 4. Overfitting is a common problem in
statistics, that refers to the tendency to choose a complex model that provides a
very good fit to the observed data, but does not generalise well to unseen data.
In the case of sophistication, overfitting occurs if the model that determines the
sophistication contains much or even all of the noise. In statistics, overfitting is
often addressed by penalising complex models. In sophistication, however, such
penalties tend to break the balance between structural information and noise,
and lead to the opposite problem: underfitting.

1Some variants deviate from the two-part coding format, see Section 4.3.

2

model complexity

re
si

du
al

 c
om

pl
ex

ity

C(x)

C(x)

sophistication model complexity

re
si

du
al

 c
om

pl
ex

ity

C(x)

C(x)

sophistication

Figure 1: (left) Two-part representations of x by the two components of their code. The
Kolmogorov complexity C(x), appearing as a black diagonal, provides a lower bound on
the total codelength. We consider only representations that are close to this optimum—
called candidates—with the threshold represented by a dashed line. The size of the
smallest model below the threshold is the sophistication of the data. (right) The same
image, after a constant perturbation in the model complexity caused by a change in
numbering.

Underfitting occurs when the selected model is simple, but fails to capture
all structure in the data. This is also a problem for sophistication because the
models under consideration are so powerful. In particular, in any program-
ming language, there are programs that implement an interpreter for another
language. Such universal models are simple, since they can be described with
a relatively small number of bits, yet are able to represent any data using a
code within a constant from the Kolmogorov complexity. Such a two-part rep-
resentation essentially encodes all information as noise. If complex models are
penalized, then the problem becomes to make sure that universal models are
not always preferred for complex data. The usual workaround is to restrict the
set of allowed models, for instance to total functions. While this excludes uni-
versal models, it is questionable whether it adequately solves the problem of
underfitting in general.

Finally, in Section 5 we argue that while two-part coding can yield useful
insights into the structure of the data and identifies some models as poor rep-
resentations, it is probably not possible to objectively separate structure from
noise and identify a single model as “best”: many models of different complexi-
ties may be reasonable representations. Rather than doggedly trying to “fix” this
property of algorithmic statistics, we propose embracing the idea that the data
allows for multiple, equivalent interpretations of which information is struc-
tured, and which is random, and that there is no such thing as sophistication.

2 Notation

The following notation allows us to generalize across all definitions and vari-
ants, save the occasional exception which we will highlight individually.

3

Let B = {0, 1}∗. We deal with partial computable functions f : B × B → B,
which we also call models. f is called prefix if domz(f) = {y : f(y, z) 6= ∞},
is a prefix free set for all z, i.e. no string in domz(f) is a prefix of another. A
function f is total if ∀zdomz(f) = B. In most cases, we do not use the second
argument, and let f(x) = f(x, ε).

A numbering is an enumeration of the partial computable functions, denoted
byψ1,ψ2, . . . or simplyψ. We fix one canonical numbering φ, chosen to be effec-
tive: ie. given i and y, we can effectively compute φi(y). We call a numbering
ψ acceptable if there exist total, computable functions a,b : N → N with ∀ : i,
φi = ψb(i) and ψi = φa(i).

A model class is a set of indices in a numbering ψ. We define four classes:

• The indices of the partial computable functions C = N.

• The total functions T = {i : ψi is total}. Note that T is not computably
enumerable.

• K is an enumerable set such that {ψi : i ∈ K} is the set of all partial
computable prefix functions.

• The finite sets: F is an enumerable set such that {ψi : i ∈ F} is the set of
uniform codes for all finite sets.2

Let x denote the prefix-encoded representation for x. We require that the
mapping satisfies |x| = |x| + O(log |x|) (see eg. [15, Section 1.4]). To simplify
notation, we will sometimes conflate natural numbers and binary strings, im-
plicitly using the ordering (0, ε), (1, 0), (2, 1), (3, 00), (4, 01), . . .

For technical reasons, we deviate slightly from the traditional notation of
Kolmogorov complexity: let M be a model class and ψ an acceptable num-
bering, then let CM,ψ(x | z) = min{|̄ıy| : ψi(y, z) = x, i ∈ M}, with CM,ψ(x) =
CM,ψ(x | ε). We omit the numbering when the distinction is not relevant. CC(x)
corresponds to the plain Kolmogorov complexity C(x) and CK(x) corresponds
to the prefix-free version K(x). Note that the notation C{i},ψ(x) represents the
smallest two-part description of x using model ψi.

We use the principle of a numbering for the purpose normally served by the
universal Turing machine. We prefer to work with numberings as it highlights
an important issue: while Kolmogorov complexity is invariant to the choice of
numbering this property does not immediately carry over to sophistication: for
some treatments, the result is highly dependent on the chosen numbering, as
we will see in the next section.

3 Inefficient indices

The simplest approach to sophistication would be to ‘open up’ the Kolmogorov
complexity and to see which program achieves the smallest description length:

2A uniform code for a set F is a surjective prefix function f : {0, 1}dlog |F|e→ F.

4

the program that witnesses the Kolmogorov complexity. This witness is a two-
part coding; it consists of a model and an input.

Definition 1 (Index sophistication). Let ψ be an acceptable numbering. Let M
be the model class from which candidates are chosen, and let N be the model
class that determines the minimum achievable complexity. Let c be a fixed
constant. The index sophistication is:

SM,N,ψ,c
index (x) = min

{
|i| : C{i},ψ(x) 6 CN,ψ(x) + c, i ∈M

}
.

When M = N, we will use SM,ψ,c
index . If the set over which the minimum is taken

is empty, the sophistication is undefined.

Koppel and Atlan’s treatment [13, 14], where the name sophistication orig-
inates, follows this basic logic, although it contains idiosyncracies like the use
of monotonic models, and an extension to infinite strings. As the subsequent
history of sophistication has discarded these, we will not discuss them here.

In [4, 3] Koppel’s principle is limited to finite strings, with T as a model
class. The definition is similar to ST,C,ψ,c

index , except the total complexity of a
witness (i,y) is measured as |i| + |y| without the cost of delimiting the two.
This difference is not relevant to the current discussion. The restriction to T is a
common approach, which avoids underfitting, as discussed in the next section.

Lemma 1. Let Sψindex denote any index sophistication with respect to numbering
ψ (with any choice for M, N and c). There are acceptable numberings ψ and ξ
such that for all x: |Sψindex(x) − S

ξ
index(x)| >

1
2 min{Sψindex(x),S

ξ
index(x)}.

Proof. Let zi ∈ B consist of 2i − 1 zeroes followed by a one. Define ψ, ξ such
that ψj(x) = φi(x) for j = z2i and ξj(x) = φi(x) for j = z2i+1, with all other
functions returning ∞ for all inputs. Choose any x and assume w.l.o.g. that
Sψindex(x) 6 S

ξ
index(x). By construction, we have 2Sψindex(x) 6 S

ξ
index(x).

Thus, the length of the index is a very poor indicator of model complexity.
For a robust measure, we define the complexity of a function f as in [11, 20] by

CM,ψ(f) = min{CM,ψ(i) : ψi = f} . (1)

Lemma 3 in the appendix shows that CC(f) and CK(f) are invariant. Note that
the perversely inefficient numberings of Lemma 1 are no issue for Kolmogorov
complexity: we can use a UTM with a more efficient numbering as a model at
only a constant penalty. For sophistication, however, the numbering is crucial.

There are two ways to use CM(f) for more robust attempts to define sophis-
tication. Confusingly, both are used in the literature. First, we can measure the
complexity of the model φi as CK(φi), which is then the size of the first part of
a two-part code describing the data. This approach is used in [7, 8, 20, 9].

Second, we can stick to using the length of the index as the measure of so-
phistication, but restrict the allowed numberings to those that can represent a
given function efficiently. This approach is taken by Adriaans in [1], who defines

5

facticity as SC,ψ,0
index , but only allows faithful numberings. Formally, a faithful num-

bering has the property that ∀i∃j : ψi = ψj, |j| 6 CC(ψj) + c, for some constant
c. Essentially, this means that a faithful numbering can represent a function f
with an index the same length as the Kolmogorov complexity CC(f).

We prove in the appendix that—contrary to Adriaans’ suggestion—there do
exist faithful, acceptable numberings (Lemma 4). However, even choosing a
faithful numbering is not enough. The Kolmogorov complexity uses representa-
tions of the form ı̄y, with ψi(y) = x, where the bar denotes some straightfor-
ward prefix encoding to delimit the model description i from its input y. If we
define a second prefix encoding ı̃, with |̄ı|− |̃ı| unbounded, we can define a sec-
ond representation ūı̃y, with ψu(̃ıy) = ψi(y), at a constant overhead |u|, and
gain more than |u| for sufficiently complex strings, resulting again in a bounded
sophistication.

We continue with a sophistication that avoids the issues of inefficient indices
and of inefficient prefix encodings. We change the definition of index sophistica-
tion so that its two-part representations use CK(φi) bits for the representation
of the model. We first introduce the following notation for the M-Kolmogorov
complexity using such compact two-part representations:

CM,ψ
comp(x) = min{CK,ψ(ψi) + |y| : ψi(y) = x, i ∈M} .

For model classes K and C this is equivalent to the existing definition and in-
variant to the numbering. Note that again, we use C{i},ψ

comp (x) to represent the
smallest two-part code using model ψi.

Definition 2 (Sophistication).

SM,N,ψ,c(x) = min
{
CK(φi) : C

{i},ψ
comp 6 CN,ψ

comp(x) + c, i ∈M
}

.

4 Balancing under- and overfitting

In the last section, we began to see the delicate balance between the two code
components. We will study this balance, starting with the variant SK,ψ,c, which
is not used in the literature, but helps to illustrate the issues we wish to discuss.

K has optimal representations with all but a constant part of the informa-
tion in the input and it has optimal representations with all information in the
model. The downside to this balance is that it becomes easy to show a lack of
invariance. We can tweak the numbering so that models in a specific subset
M ′ ⊂ K become cheaper to represent by an arbitrary amount relative to oth-
ers: we can ensure that a model in M ′ always determines the sophistication.
For instance, if we let M ′ contain only a universal model we get a bounded
sophistication.

Theorem 1 (Underfitting). Let M,N be model classes with M ⊆ N and let
M contain a universal model φu, with the property that ∃c∀i ∈ N, x ∈ B :

C
{u},φ
comp (x) 6 CN,φ

comp(x) + c. Then, for some numbering ψ, SM,N,ψ,c is bounded.

6

This problem is well known and many treatments avoid it by restricting the
model class. Less well known, perhaps, is that the same holds in the other direc-
tion: if M ′ is the set of singleton models—those models that output a single x for
an empty input—we get a sophistication equal to the Kolmogorov complexity.

Theorem 2 (Overfitting). Let X ⊆ B. Let M ⊆ N ⊆ K be model classes where
for every x ∈ X there is a singleton model i ∈ M with φi(ε) = x. Then there
is a numbering ψ, and a constant c, such that for all x ∈ X we have CK(x) −
SM,N,ψ,c(x) 6 c.

The proofs of both theorems rely on a simple principle: there exist number-
ings which have the effect of penalizing CK(φi) for any model outside M ′ by
an arbitrary constant amount. We can use this to effectively ‘push’ these mod-
els outside of the range of candidates, ensuring that, under this numbering, a
model in M ′ always determines the sophistication. The requirements for M ′ are
somewhat complex. The following lemma gives a set of sufficient conditions.

Lemma 2. Let M and N be any model class, let X be any set of binary strings and
let D : B → N be a partial computable decoding function with a prefix-free do-
main that maps function descriptions to their indices in φ. Let M ′ = range(D).
Further assume there is a constant c such that:

(a) ∀m∈M′ : min{|p| : φD(p) = φm} 6 CK,φ(φm) + c

(b) ∀x∈X : CM′,φ
comp (x) − CN,φ

comp(x) 6 c.
Then, there is a ψ such that if SM,N,ψ,k(x) is defined, then SM,N,ψ,k(x) =
SM

′,N,ψ,k(x) up to a constant.

Proof. Pick any x ∈ X. Let f and g be φ-indices such that f ∈ M ′ and g /∈ M ′

nor is φg equivalent to any function indexed by M ′. Furthermore let C{f},φ
comp (x)

and C{g},φ
comp (x) both be within a constant q of CN,φ

comp(x). Assumption (b) ensures
that M ′ always provides such an f.

We will show that for every integer r, there is a numbering ψ such that
C

{g′},ψ
comp (x) − C

{f′},ψ
comp (x) > r for all x ∈ X, where f ′ and g ′ are the ψ-indices

equivalent to f and g. Thus, for large enough r, φg is eliminated as a candidate
model, while φf remains in place. Thus, under ψ, a member of M ′ determines
the sophistication, or the sophistication is undefined.

Let d be a positive constant. We will show later how to choose it to achieve
the required result. We define ψ as follows:

ψ0(p) = 0d1D(p), ψ0d1i(p) = φi(p), ψj(·) =∞ if j 6= 0 and j 6= 0d1 . . .

The key to the proof is the way that the function complexity CK(·) changes
when we change the numbering from φ to ψ. For f, the value increases by no
more than a fixed constant, but for g, it increases by a constant that we can
arbitrarily increase by increasing d.

We will first show that for f, the value does not increase by more than a

7

constant cf. Assume w.l.o.g. that 0 ∈ K.

CK,ψ(φf) = min
{
|̄q| : ψψj(q) = φf, j ∈ K

}
rewriting (1)

6 min
{
|0q| : ψψ0(q) = φf

}
choose j = 0

= min
{
|q| : φD(q) = φf

}
+ |0|

6 CK,φ(φf) + cf by assumption (a).

In order to show that for g, we can increase the difference by an arbitrary
constant, we first show that, for any z not in the range of ψ0, the Kolmogorov
complexity itself increases by at least d when we switch from φ to ψ:

CK,ψ(z) = min {|̄ıy| : ψi(y) = z, i ∈ K} by definition

= min
{
|0d1jy| : ψ0d1j(y) = z

}
since z /∈ range(ψ0)

> min {|̄y| : φj(y) = z}+ d

= CK,φ(z) + d . (2)

We now show the increase in model complexity for g. First, assume φg 6= ψ0:

CK,ψ(φg) = min
{
CK,ψ(i) : ψi = φg

}
= min

{
CK,ψ(0d1j) : φj = φg

}
= CK,ψ(0d1j)

> CK,φ(0d1j) + d by (2)

> CK,φ(j) − cg + d since CK(j) 6 CK(0d1j) + c0

> CK,φ(φg) − cg + d .

Now assume φg = ψ0. We have CK,ψ(φg) = min
{
CK,ψ(i) : ψi = ψ0

}
> d.

This follows from the fact that the minimum is achieved either at i = 0 or at
i = 0d1m with m /∈ M ′. Neither have a representation using a function with a
ψ-index without the 0d1 prefix.

Choosing d > r+max
{
CK,φ(ψ0), cg

}
+ cf+ 2q ensures that for both cases,

we have CK,ψ(φg) > CK,φ(φg) + r + cf + 2q. While CK(ψ0) depends on the
choice of d, we have CK(ψ0) 6 CK(d) + CK(D), up to a constant, which is in
O(logd), so we can choose d to satisfy the inequality.

Finally, we can show the result:

C
{g′},ψ
comp (x) − C

{f′},ψ
comp (x)

= CK,ψ(φg) + min{|y| : φg(y) = x}− C
K,ψ(φf) − min{|y| : φf(y) = x}

> CK,φ(φg) + r+ cf + 2q+ min{|y| : φg(y) = x}

− CK,φ(φf) − cf − min{|y| : φf(y) = x}

= C
{g},φ
comp (x) − C

{f},φ
comp (x) + r+ 2q > r .

Theorems 1 and 2 follow as corollaries. For Theorem 1:

8

Proof. Let D be a prefix function as in Lemma 2 that returns the index of u
for the argument ε and ∞ for any other argument. That is, M ′ = {u}. This
construction satisfies the conditions 1 and 2 from Lemma 2. Invoking it, we
find that there exists an acceptable numbering ψ for which SM,N,ψ,k(x) =
SM

′,N,φ,k(x) + c. Since M ′ contains only a single model, SM
′,N,φ,c(x) is con-

stant.

And for Theorem 2:

Proof. Let x be any string. Given a description of x, we construct some index
i such that φi(ε) = x (a singleton for x). Thus, CK,ψ(φi) 6 CK,ψ(x) up to a
constant. Likewise, given φ we can produce x, so that |CK,φ(φi)−C

K,φ(x)| 6 c
for some constant c.

We now define a computable function D by D(̄ıy) = j where φj(ε) = φi(y)
and i ∈ K, and let M ′ be its range. We will show that the two conditions of
Lemma 2 hold for the prefix function D.

(a) Let f ∈ M ′ with φf(ε) = x. Then min{|p| : ψD(p) = φf} = min{|̄ıq| :

φi(q) = x} = C
K(x) 6 CK(φf)+ c. (b) On the one hand CM′,ψ

comp (x) 6 CK(φf)+

|ε| 6 CK(x) + c. On the other hand, the witness to CM,ψ
comp(x) is an effective

description of x, so CK(x) is at most a constant larger.
Now, by Lemma 2 there is a numbering ψ such that we have SM,N,ψ,k(x) =

SM
′,N,ψ,k(x) + c. We observed that |CK(φi) −C

K(x)| 6 c0 for all singletons, so
SM

′,N,ψ,k(x) > CK,ψ(x) − c0. This proves the theorem.

Thus, in this balanced sophistication, there is no invariance: all information can
be seen as structure, or as noise, depending on the numbering. To avoid these
issues, existing proposals upset the balance to exclude or penalize the universal
models, and possibly the singleton models.

4.1 Overfitting

We will now review the treatments in the literature that show overfitting. The
first is the structure function, proposed by Kolmogorov, most likely the first
attempt at separating structure from noise in an objective manner. Kolmogorov
defined the following function, using the finite sets F as models:

hx(α) = min
{

log |F| : x ∈ F,CK(F) 6 α
}

and suggested that the smallest set for which CK(F) + log |F| 6 CK(x) + c holds
for some pre-chosen constant c, can be seen as capturing all the structure in x
[7]. This is equivalent to the sophistication SF,K,ψ,c(x). Theorem 2 shows there
are numberings for which this sophistication is always equal to CK(x). Thus,
either this is true for all numberings, or this sophistication is not invariant.

In [8] the structure function is extended to an algorithmic sufficient statistic.
This is, again, essentially the witness to the sophistication SF,K,ψ,c(x). A proba-
bilistic version is also introduced, which uses the model class P, which indexes
the set of functions that compute computable probability semimeasures up to a

9

multiplicative constant error, yielding SP,K,ψ,c(x). For both, Lemma 2 gives us
a numbering such that the singleton is always the minimal sufficient statistic.

It may be argued that the slack parameter c in the sophistication, which
determines the allowed gap between a candidate representation and the com-
plexity, should depend on the numbering, but this dependence has not been
mentioned in the literature and there is no obvious method to choose this con-
stant for a given numbering.

In traditional statistics, overfitting is often addressed by a penalty on com-
plex models. As we have seen, a strong penalty, such as the one imposed by an
inefficient prefix encoding of the model, will cause underfitting. A more subtle
approach is to allow descriptions that are not self-delimiting. The gap between
the smallest self-delimiting description and the smallest non self-delimiting de-
scription grows without bound [15, Section 4.5.5], so that some information
ends up in the noise, since placing all information in the model results in a self-
delimiting, and thus non-optimal description. This eliminates the singletons
as viable candidates. This approach is taken by Vitányi [20] and by Adriaans
[1]. Such measures reduce the overfitting problem, but they only increase the
tendency to underfit. We also pay the price that the models can no longer be
equated with probability measures, weakening the link to traditional statistics.

4.2 Underfitting

Universal models are a widely acknowledged problem for sophistication, and
most proposals avoid them by limiting the allowed models to exclude them. It is
known that there are strings x for which SF,K,ψ,c(x), ST,ψ,c(x) and ST,K,ψ,c(x)
are close to |x| (up to a logarithmic term). Proofs can be found in [8], [4]
and [20] respectively. These are the absolutely non-stochastic strings [17]. The
existence of these strings is independent of the numbering.

However, the problem of the singletons remains. Only one model class elim-
inates both the singletons and the universal model: T. The only proposal we
are aware of that uses an efficient model representation and excludes the uni-
versal models and excludes the singletons is: ST,K,ψ,c, from [20]. While this
avoids our proofs of boundedness, there is no evidence that ST,K,ψ,c is actually
invariant.

While high sophistication strings exist for ST,K,ψ,c, they may not conform to
sophistication’s motivating intuition. To show this, we use the concept of depth:

Definition 3 (Depth[5, 2]). Let U be some universal Turing machine, so that
U(̄ıy) = φi(y). Let Ut be a simulation of this machine, which is allowed to
run for at most t steps, and returns 0 if it has not yet finished at that point.
Let CM

t (x) = min{|̄ıy| : Ut(̄ıy) = x,φi ∈ M}. The c-depth is dM,c(x) =
min
{
t : CM

t (x) − CM(x) 6 c
}

.

Deep strings are those that can only be optimally compressed with a great
investment of time. We note that it is exceedingly unlikely that a deep string is
sampled from a shallow distribution [6, 5].

10

Theorem 3. Let A(n) be the single-argument Ackermann function and cd some
constant. For all k, there is a numbering ψ such that for all strings with depth
dC,cd(x) 6 A(CC(x)) the sophistication ST,K,ψ,k(x) is bounded.

Proof. Let U(̄ıy) be some universal Turing machine, and let UA(̄ıy) be a sim-
ulation of that machine which outputs 0 if the number of steps taken exceeds
A(|̄ıy|). Let u be the index of the function UA in the standard enumeration.

Let D(ε) = u. We can instantiate Lemma 2 with D, M ′ = {u} and X = {x :
dC,cd(x) 6 A(CC(x))}. This tells us that there exists a numbering ψ for which
ST,K,ψ,k(x) = SM

′,K,ψ,k(x) + |0̄| 6 c for all x ∈ X.

This shows that while high-sophistication strings exist, they do not behave as ex-
pected. Consider a string that is typical for a shallow model, say some elaborate
probabilistic automaton. Under ST,K,ψ,c, no matter how high the complexity of
the automaton, the sophistication is bounded. We could encode the collected
works of Shakespeare in its transition graph, and this information would be
counted as noise. Any structure simple enough to be exploited within the time
bound of the Ackermann function will not be seen as ‘meaningful information’.
Only structure so deep that it would take beyond the lifetime of the universe
to decompress would count towards sophistication. In the remainder we will
refer to strings x with dC,c(x) 6 A(CC(x)) as shallow strings. Note that any
string whose shortest program can be run in any time bound represented by a
primitive recursive function is shallow.

The relation between S(x) and d(x) is also investigated in [3], where it is
shown that within a logarithmic error term on the sophistication and the slack,
they are identical. Our point is not the similarity between the two, but that for
all practical strings, the sophistication is bounded. This contradicts the intuition
that sophistication measures structure, as it seems to suggest that all strings
we can possibly hope to understand or generate contain no structure, save a
constant amount. The alternative is that under other numberings these strings
do have structure, but then the sophistication is not invariant.

As for the strings with high sophistication, they have the property that they
can be compressed far better with partial functions than with total: they are
non-typical for the model class T. This suggests that the ‘non-stochastic’ prop-
erty of strings with high sophistication [17, 19] says more about depth and
totality than it does about structure and noise.

4.3 Other variants

By moving away from the idea of two-part coding, the mechanics of lemma 2
can be avoided. In [16], the naive sophistication is introduced. We will define a
generic version, parametrized by model class. LetCψi

(x) = min {|y| : ψi(y) = x}.
Then we define the naive sophistication as:

SM,ψ,c
naive (x) = min

{
CK,ψ(ψi) : Cψi

(x) − CK,ψ(x | i) 6 c, i ∈M
}

.

The condition now is not that the two-part code length is minimal, but that the
randomness deficiency Cψi

(x) − CK,ψ(x | i) is less than a constant. SF,ψ,c
naive (x)

11

corresponds to the version in [16]. The switch to the randomness deficiency
avoids Theorem 2, but we end up with the same problem as in Theorem 3: for
shallow strings ST,ψ,c

naive is defined by the model UA, and thus bounded.
We cannot show that SF,ψ,c

naive (x) is bounded for shallow strings, but this is
only a consequence of the use of sets, not of the switch to randomness defi-
ciency as a condition. Any set sophistication is necessarily lower-bounded by
the function set(x) = min

{
CK(F) : x ∈ F

}
and if this function were bounded, it

would suggest that a finite amount of finite sets contained all strings.

Theorem 4. Let ψ be any acceptable numbering. Then for all shallow x and
large enough c, ST,K,ψ,c

naive (x) is bounded and for come constant cF, we have:

set(x) 6 SF,K,ψ,c
naive (x) 6 CK,ψ(CK,ψ(x)) + cF .

Proof. Let ψ be any acceptable numbering. Let the Turing machineU be defined
as U(̄ıy) = ψi(y) if i ∈ K, and U(̄ıy) = ∞ otherwise. Let UA be derived from
U as in section in Section 4.2 and let φu compute UA.

For the first part we have Cψu
(x) − CK,ψ(x | u) 6 c0 for some c0, thus for

large enough c, ST,ψ,c
naive (x) 6 CK(ψu). For the second part, let CK,ψ(x) = k and

FAk = {x | ∃p : UA(p) = x, |p| = k}. |FAk | 6 |{p : |p| = k}|, so that log |FAk | 6
k, which gives us log |FAk | − CK,ψ(x | FAk) 6 c1. Thus, for large enough c,
SF,ψ,c

naive (x) 6 CK(FAk). From a description of k, we can compute FAk with a finite
program, so that CK,ψ(FAk) 6 C

K,ψ(k) + cF, which completes the proof.

Note that the constant c only needs to be large enough to ensure thatCK,ψ(x)−
CK,ψ(x | u) 6 c and CK,ψ(x) −CK,ψ(x | FAk) 6 c. Since u and FAk are generally
of no value in computing x, c is likely very small.

Another approach is the coarse sophistication [4], defined in [16] as:

SM,N,ψ
coarse (x) = min

c

{
SM,N,ψ,c(x) + c

}
.

Again, this variant avoids the pitfalls of Theorem 2. If there are candidates that
are as good as the singletons but with smaller size by more than a constant, the
constant penalty c will eventually be much less than the gain for the simpler
witness, and the singletons will not determine the coarse sophistication. The
coarse sophistication is within a logarithmic term of the busy beaver depth [4].
As with the naive sophistication, we can show that for shallow strings, the total
function version is bounded, and the set version grows very slowly:

Theorem 5. Let ψ be any acceptable numbering. For all shallow x, ST,K,ψ
coarse (x)

is bounded and there is a constant cF such that:

set(x) 6 sF,K,ψ
coarse (x) 6 2CK,ψ(CK,ψ(x)) + cF .

Proof. Let ψ be any acceptable numbering and define UA, φu and FAk as in
the proof of Theorem 4. For the first part, we know that for some constant c0,
C

{u},ψ
comp (x) 6 CK,ψ

comp(x) + c0 so that ST,K,ψ,c0(x) 6 CK,ψ(φu), thus ST,K,ψ
coarse (x) 6

12

CK,ψ(φu) + c0. For the second part, we know that for some c1, CK,ψ(FAk) +

log |FAk | 6 CK,ψ(k) + CK,ψ(x) + c1, so that SF,K,ψ,CK(k)+c1(x) 6 CK,ψ(FAk).
Thus, SF,K,ψ

coarse (x) 6 CK,ψ(FAk) + C
K,ψ(k) + c1 = 2CK,ψ(CK,ψ(x)) + cF.

In [18], Vereshchagin proposes a strongly algorithmic sufficient statistic. Where
the regular algorithmic sufficient statistic F from [8] has CK(F | x) constant, the
strong variant imposes the stronger requirement that CT(F | x) is also constant.
This reduces the problems of underfitting discussed in this section, but since
CT({x} | x) is bounded, by Theorem 2, overfitting remains a problem: there
exist numberings under which the singletons are the only candidates.

Finally, effective complexity [9], proposed by Gell-Man and Lloyd, was for-
mulated from the perspective of physics, but fits the mold of sophistication. The
model class consists of all computable probability distributions on finite sets.
The complexity of the model is measured by its Kolmogorov complexity, avoid-
ing the problems of Section 3. Theorem 2, however, still applies to effective
complexity. Unlike other sophistication measures, it is not the candidate with
the smallest model which is chosen, but the one which reproduces the data
within the shortest time. Thus, if there are multiple candidates, this approach
would likely favor the singletons. In [10], the authors abandon this approach,
and note that the choice from the set of candidates is a subjective one, which
depends on context, which is in line with the view we express in the next sec-
tion.

5 Discussion and conclusion

We have criticized existing measures of sophistication and shown technical
problems with all of them. But that does not in itself mean that it should be
impossible to come up with a sound measure. The common intuition, starting
with the structure function, appears to be that the crucial property is whether a
string is typical for a model, and that this typicality can be tested: another ran-
dom choice from that model should select a string with the same structure. This
idea is bold, but not unreasonable. Nevertheless, we offer the opinion that such
a clean-cut separation cannot be made to work. We provide two arguments.

For the first argument, we take a generative perspective. We can generate
data from a model φi, i ∈ K, by feeding it random bits until it produces an out-
put. We will call the resulting probability distribution pi. Call a sophistication
consistent if, for sufficiently large data, it reflects the complexity of the source
of the data. Now, let φu(̄ıy) = φi(y) and sample from pu. Then the initial
bits will determine the prefix encoded index ı̄ of the function φi that φu will
subsequently emulate, and the remaining bits are used as inputs to φi. We now
ask, what should be the sophistication of the resulting data?

Certainly, if we have to judge based only on the data, we cannot exclude
the possibility that the data was sampled from pu: after all, it was. Yet, neither
can we deny that it may have came from pi, as again, it did! Eliminating the
universal models does not solve this problem: the same argument holds if φu

13

indexes, for instance, only those models computable by finite automata. Any
model that dominates a set of other models creates this kind of ambiguity.

Consider the following metaphor. We are given a a bitmap image of the
painting Impression of a Sunrise. There are many good models for this string,
from very generic to very specific. Sophistication suggests that we can choose
one of these as the objective, intrinsic model of the data. The universal model
says that it is ‘some compressible, finite object’. Another might say that it is ‘an
image’. Even more specific would be ‘a painting’, ‘a Monet’, or specifically ‘the
painting Impression of a Sunrise’. A sound sophistication should be able to select
one of these as the proper representation of structure in the data, and disqualify
the others as over- or underfitting. But how should we be able to say that the
data is intrinsically more of a painting than an image? More of a Monet than a
painting? Intuitively, such distinctions require further assumptions, or a second
sample from the same distribution.

The second reason we doubt sophistication is more technical. Consider
the set of all possible two-part representations of x. When the numbering
is changed, the codelength of the model part of all these representations will
change. This is illustrated in the second diagram in Figure 1. The invariance
theorem expresses that this change is limited by a constant term. However,
even this small shift can push some representations out of the acceptable region
(indicated by the dashed line), and pull others in. This may lead to a differ-
ent representation determining the sophistication, one whose total codelength
is close to what it was before, but whose model codelength can be anywhere be-
tween 0 and CC(x). If such jumps can occur, the sophistication is not invariant.
And while we cannot prove in general that such jumps can always occur, there
seems to be no reason to believe that they do not. Indeed, in [3] it is shown
that logarithmic changes in the slack parameter can already cause these effects.

So we take a skeptical view of sophistication. Note that part of the the-
ory is fine: there is nothing wrong with evaluating models for the data by
comparing their two-part code lengths. In fact, the randomness deficiency
− log pi(x) − C

K(x | i) has a direct statistical interpretation as a measure of
counterevidence—under pi, the probability of a randomness deficiency above k
is less than 2−k [6, Lemma 6]. In the Monet example above, this will allow us
to disqualify the model expressing that the data is actually, say, a recording of
jazz music.

But fundamental problems arise as soon as a hard cut-off is introduced on
how far we are allowed to deviate from the minimum determined by the Kol-
mogorov complexity. In our opinion, a lot of measures taken in the literature,
such as restricting the model class or introducing model penalties, complicate
the method and make problems harder to analyse, without actually addressing
the fundamental issue. This is dangerous: if such ad-hoc fixes result in a theory
that is hard to prove either wrong or right, it creates an artificial dead end for
a valuable area of research. When the hard cut-off on candidates is avoided,
however, all such measures are no longer necessary. What remains is an el-
egant theory that can be used to sift through all possible models, disproving
most while retaining a select number of interesting candidates for our further

14

consideration.

Acknowledgements

This publication was supported by the Dutch national program COMMIT and
by the Netherlands eScience center. We thank Tom Sterkenburg for interesting
discussions.

References

[1] P. Adriaans. Facticity as the amount of self-descriptive information in a
data set, 2012. arXiv:1203.2245.

[2] L. Antunes, L. Fortnow, D. van Melkebeek, and N.V. Vinodchandran. Com-
putational depth: concept and applications. Th. Comp. Sc., 354(3):391–
404, 2006.

[3] L.F.C. Antunes, B. Bauwens, A. Souto, and A. Teixeira. Sophistication vs
logical depth, 2013. http://arxiv.org/abs/1304.8046.

[4] L.F.C. Antunes and L. Fortnow. Sophistication revisited. Theory Comput.
Syst., 45(1):150–161, 2009.

[5] C.H. Bennett. Logical depth and physical complexity. In The Universal
Turing Machine: A Half-Century Survey. Oxford University Press, 1988.

[6] P. Bloem, F. Mota, S. de Rooij, L. Antunes, and P. Adriaans. A safe approx-
imation for Kolmogorov complexity. In ALT, pages 336–350, 2014.

[7] T.M. Cover. Kolmogorov complexity, data compression, and inference.
In The Impact of Processing Techniques on Communications, pages 23–33.
Springer, 1985.

[8] P. Gács, J. Tromp, and P.M.B. Vitányi. Algorithmic statistics. IEEE Tr. Inf.
Th., 47(6):2443–2463, 2001.

[9] M. Gell-Mann and S. Lloyd. Information measures, effective complexity,
and total information. Complexity, 2(1):44–52, 1996.

[10] M. Gell-Mann and S. Lloyd. Effective complexity. Nonextensive Entropy-
Interdisciplinary Applications, by Edited by Murray Gell-Mann and C Tsallis,
pp. 440. Oxford University Press, Apr 2004. ISBN-10: 0195159764. ISBN-
13: 9780195159769, 1, 2004.

[11] P. Grünwald and P.M.B. Vitányi. Shannon information and Kolmogorov
complexity, 2004. arXiv:cs/0410002.

[12] S.C. Kleene. On notation for ordinal numbers. J. Symb. Log., pages 150–
155, 1938.

15

[13] M. Koppel. Structure. In The Universal Turing Machine: A Half-Century
Survey. Oxford University Press, 1988.

[14] M. Koppel and H. Atlan. An almost machine-independent theory of
program-length complexity, sophistication, and induction. Inf. Sci., 56(1-
3):23–33, 1991.

[15] M. Li and P.M.B. Vitányi. An introduction to Kolmogorov complexity and its
applications. Springer-Verlag, 1993.

[16] F. Mota, S. Aaronson, L.F.C. Antunes, and A. Souto. Sophistication as
randomness deficiency. In DCFS 2013, pages 172–181, 2013.

[17] A. Kh. Shen. The concept of (α, β)-stochasticity in the Kolmogorov sense,
and its properties. Soviet Math. Dokl, 28(1):295–299, 1983.

[18] Nikolay Vereshchagin. Algorithmic minimal sufficient statistics: a new
approach. Theory of Computing Systems, pages 1–19, 2015.

[19] N.K. Vereshchagin and P.M.B. Vitányi. Kolmogorov’s structure functions
and model selection. IEEE Tr. Inf. Th., 50(12):3265–3290, 2004.

[20] P.M.B. Vitányi. Meaningful information. IEEE Tr. Inf. Th., 52(10), 2004.

A Appendix

Lemma 3 (Invariance of function complexity). Let ψ and η be any two ac-
ceptable numberings Let f be any partial computable function. There exists a
constant c independent of f such that∣∣CK,ψ(f) − CK,η(f)

∣∣ 6 c and
∣∣CC,ψ(f) − CC,η(f)

∣∣ 6 c .

Proof. Let g(i) be the function such that ψi = ηg(i).

CC,ψ(f) = min
{
CC,ψ(i) : ψi = f

}
> min

{
CC,η(i) : ψi = f

}
− c

= min
{
CC,η(i) : ηg(i) = f

}
− c = min

{
CC,η(g(i)) : ηg(i) = f

}
− c ′

> min
{
CC,η(j) : ηj = f

}
− c ′ = CC,η(f).

Reverse ψ and η for the opposite inequality. The same proof holds for CK.

Lemma 4. There are faithful acceptable numberings.

Proof. Let d ∈ N be an index such that φd(y) =∞ for all y. Define

ψq =

{
φφi(p) if q can be written as ı̄p and φi(p) <∞,
φd otherwise.

It may seem that the second line requires a test whether φi(p) halts, for ψ to be
acceptable, but as we will show below, this is not the case.

16

To show that ψ is faithful, pick any function f. Then

CC,φ(f) = min{CC,φ(i) : φi = f} = min{min{|āb| : φa(b) = i} : φi = f}

= min{|āb| : φφa(b) = f} = min{|āb| : ψāb = f}.

This shows there is a sufficiently small ψ index.
To show that ψ is acceptable, let φj(z) = z. Then a φ-index i can be mapped

to a ψ-index with r(i) = ̄i, so that ψr(i)(y) = ψ̄i(y) = φi(y). For the reverse,
define φv(̄ıp,y) = φφi(p)(y). For fixed ı̄p, the snm-theorem [12] states that we
can compute the h such that φh(y) = φv(̄ıp,y). Let h(̄ıp) denote this index as a
function of the program; further define h(q) = d if q cannot be expressed as ı̄p.
By construction h is total and computable. To check that the mapping returns
the correct function, rewrite φh(ı̄p)(y) = φv(̄ıp,y) = φφi(p)(y) = ψı̄p(y). Note
that if q can be written as ı̄p, but φi(p) diverges, h(q) will still return a function,
but one which doesn’t halt, making it equivalent to φd as required.

17

