
This presentation is about the question How do we quantify the amount of information in an 
object? How do we formalize the intuition that some objects seem to contain more informa-
tion than others, even if they have the same size?
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We have a very good answer to this question, in the form of Kolmogorov complexity. But, as 
we will see, Kolmogorov complexity doesn’t always fit our intuition. 

The second answer, sophistication, hopes to fix this. Sophistication is built on top of Kolm-
ogorov complexity, goes by many different names, and as we will see, isn’t nearly as well 
defined as Kolmogorov complexity. We’ve found some serious problems with Sophistication, 
and that’s what this presentation is about.
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How do we quantify information?

 Ӱ Answer 1: Kolmogorov Complexity

 Ӱ Answer 2: Sophistication



We will start with a brief introduction to Kolmogorov complexity, since sophistication is 
based on it. We will then have a look at sophistication itself: the basic idea and the different 
variants that exist. Then, we can get into the main issues we’ve discovered. 

We will conclude with the outlook for sophistication: what conclusions can we draw? Is 
sophistication doomed, or is there some hope? And if some parts are broken beyond repair, 
can other aspects of the theory be salvaged?
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overview

 Ӱ Kolmogorov complexity 

 Ӱ Sophistication

 Ӱ Problems for Sophistication

 Ӱ Outlook for Sophistication



This is the intution behind Kolmogorov complexity in a single sentence. This leads very 
naturally to a measure of information content: take the shortest possible description of an 
object, the length of that description is the amount of information that the object contains.
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Kolmogorov complexity

If I can fully describe an object in n bits, it  

contains at most n bits of information.



To formalize this notion, we need to be precise about what we mean by an object and by 
a description. For the object, we can simply assume that our objects are encoded into bit-
strings in such a way that all the relevant information is captured. We can then build our 
theory as a measurement of the amount of information in bitstrings.

Secondly, we make no demands on the language used to describe these strings, save that 
it is effective and Turing complete. Or, equivalently, our descriptions are programs on some 
Universal Turing machine U.
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Kolmogorov complexity

If I can fully describe an object in n bits, it  

contains at most n bits of information.

 Ӱ object → bitstring

 Ӱ describe → program on a universal computer

U (ı̄y) = Ti(y)

KU(x) = min {|p| : U(p) = x}

2



There are several reasons why the idea of Kolmogorov complexity took off. In light of the 
comparison we are making with sophistication, the following are important. Firstly: it is 
very clear how the Kolmogorov complexity measures information. It reports a value in bits, 
and for each of those bits, we can tell exactly how the bit is used to encode the information 
in the object.

Secondly, the Kolmogorov complexity is unbounded. Intuitively, given some number n of 
bits, there is always some string containing more than n bits of information. Kolmogorov 
complexity does not violate this intuition.

Lastly, and most importantly, the Kolmogorov complexity is invariant. If we change the 
universal Turing machine used for our descriptions to another one, the value of the Kolmog-
orov complexity only changes in a limited and well-understood manner. To be precise, the 
value may change by any amount, but only by a constant independent of x.

It is this invariance of Kolmogorov complexity that allows us to say that we are talking 
about a property of the data, and not just some arbitrary function computed on it. However 
we formalize the intuition behind Kolmogorov complexity, we always get the same answer, 
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properties

KU(x)
+
= KV(x)

3

 Ӱ K measures information

 Ӱ K is unbounded

 Ӱ K is invariant: 



So what kinds of things are complex and simple, by Kolmogorov complexity? Here we see 
two examples. On the left is a very simple television broadcast: a simple recurring pattern. 
The whole thing can be described very concisely. On the right we see the most complex pos-
sible broadcast: white noise. In this case, the only way to describe the broadcast is to pro-
vide for every pixel at every moment whether it’s black or white.
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Kolmogorov complexity



To create something of medium complexity, we can take the noise and change the propor-
tion of black pixels, to make the noise ‘darker’. Using basic compression techniques, we can 
use this imbalance to describe this signal more concisely than the white noise.
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Kolmogorov complexity



But none of these signals seem very rich to us. Some may be difficult to describe, and con-
tain a lot of information, but we’re unlikely to watch any of them for an extended amount 
of time. The information that they contain, isn’t very interesting.

Signals that we are interested in are somewhere between the two extremes: they are partly 
predictable and partly unpredictable. They contain landscapes, human faces, dialogue, plot 
twists.

So, is there some method, in the spirit of Kolmogorov complexity, that will allow us to cap-
ture this vertical dimension? This is the question that sophistication hopes to answer.

9 of 26
Kolmogorov complexity

?



The basic idea of sophistication is not to measure all the information in a string but to split 
the information into a structural and a residual part. We do so by formulating a model class. 
We then describe the data by first describing the model, and then providing whatever infor-
mation is needed to get from the model to the data. The sophistication, then, is the amount 
of information contained in the model: it counts only the structural information in the data. 
We call this two-part coding.

Which models are used differs between treatments of sophistication, but in all cases, we 
can think of the models as Turing machines, and of the residual information as inputs to the 
Turing machines.

Each dataset can be represented with many different two-part codings. We can visualize 
these with a scatter plot.
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Sophistication

the amount of structured information in a string

Ti(y) = x

Ti: model

y: residual information

(i, y): description of x
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By taking a 45° line, and sliding it up, we can find the most efficient two-part coding. If we 
allow all Turing machines, this two-part coding is the one that determines the Kolmogorov 
complexity.
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Sophistication

the amount of structured information in a string

Ti(y) = x

Ti: model

y: residual information

(i, y): description of x

re
si

du
al

 in
fo

rm
at

io
n

model information



We then allow a certain, constant slack. Any two-part coding within a given constant of the 
Kolmogorov complexity is taken into consideration. We call these the candidates.
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Sophistication

the amount of structured information in a string

Ti(y) = x

Ti: model

y: residual information

(i, y): description of x
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Among the candidates, we choose the representation with the smallest model. The amount 
if information in the model part of this representation is the sophistication.
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Sophistication

the amount of structured information in a string

Ti(y) = x

Ti: model

y: residual information

(i, y): description of x
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This principle has been proposed many times, by many different people, under many differ-
ent names. We use sophistication as an umbrella term.

Among these people we find Kolmogorov himself, the authors of the standard textbook on 
Kolmogorov complexity, and a nobel laureate. Clearly, this is a strong intuition, at which 
many very intelligent people have arrived independently.

Nevertheless, we do not believe that this intuition is correct. We have found serious prob-
lems with all currently published proposals.
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Sophistication

effective complexity

sophistication facticity

(strong) algorithmic 
sufficient statistic

meaningful  
information

the structure 
function



In order to explain these problems, let’s return to the properties that make Kolmogorov 
complexity such a strong concept. If a formulation of sophistication is to be taken seriously, 
it should have the same properties.

First, it should clearly measure the structural information in a string. Second, It should not 
be bounded: intuitively, there should be no limit to the amount of structural information we 
can capture in a single string. Additionally, the difference between the Kolmogorov com-
plexity and the sophistication should also not be bounded. This would make sophistication 
and Kolmogorov complexity equal, since we ignore constant terms.

And finally, and again most importantly, the sophistication should be invariant. If a change 
in the ad-hoc choices made in its construction, like the choice of universal Turing machine, 
will cause a large change in the value of the sophistication, we cannot claim that we are 
measruing a meaningful property of the data. We are simply computing an arbitrary func-
tion.
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desiderata

 Ӱ S(x) should measure structural information

 Ӱ S(x) should not be bounded

• K(x) - S(x) should also not be bounded

 Ӱ SU(x) should be invariant to the choice of U



So let’s look at some ways we can define sophistication, and how they go wrong. 

The first, and possibly the most obvious option, is to ‘open up’ the Kolmogorov complexity. 
Because the Kolmogorov complexity uses programs on a universal Turing machine as de-
scriptions, we are already minimizing over two-part descriptions internally.

If we look at the shortest program for our data, the one whose length determines the Kolm-
ogorov complexity, we see that its first bits encode a Turing machine, and the rest are the 
input to that Turing machine. This is simply how the universal Turing machine is defined.

So why don’t we simply take the length of whits first part as the sophistication? There are 
several published proposals for sophistication that take this approach. Unfortunately, we can 
show that the consequences are disastrous.
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index sophistication

K(x) = min {|ı̄y| : Ti(y) = x}

S(x) = min
{
|ı̄| | ∃y : Ti(y) = x, |ı̄y|

+
� K(x)

}

4



The problem is that the way a universal Turing machine encodes other Turing machines 
does not need to be efficient. To illustrate, let’s exaggerate the problem. Take some canon-
ical enumeration of Turing machines, and define V so that it splits its input into a prefix con-
sisting of a sequence of zeros followed by a one, and the rest of the string y. If the number 
of zeros is equal to 2i for some integer i, the machine simulates Turing machine i with input 
y. Otherwise, it enters an infinite loop.

This is a perfectly valid universal Turing machine. We can use it to define Kolmogorov com-
plexity, and the values we get, will be the same as we would with any other universal Turing 
machine, up to a constant. However, the models available will blow up exponentially. Even 
using a relatively simple Turing machine that could normally be described in 400 bits will 
require more storage than there is in the observable universe.

Why doesn’t the Kolmogorov complexity not suffer? Because it can use a more efficient 
universal Turing machine as its model. Unfortunately, this doesn’t help the sophistication. If 
we allow universal Turing machines as models, this choice will lead to a constant sophistica-
tion. If we somehow disallow universal Turing machines, the siophistication becomes highly 
dependent on how efficient our universal Turing machine is.

the problem with index sophistication

V(0...01y) = Ti(y)

2i zeroes
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To solve this problem, we can translate the idea of Kolmogorov complexity to to models. 
Instead of counting the number of bits in the naive description of the model, we count the 
number of bits by which the model, or one equivalent to it, can be effectively described. 

This “Kolmogorov complexity of models” is well-defined, and has the properties of slide 3, 
most importantly invariance. Thus, if we use K(f) to measure model information and build 
sophistication of this, we get a sophistication for which the model sizes only jump around 
by a constant under changes of the universal Turing machine. 

Unfortunately, a constant jump in the model model size might still lead to much more than 
a constant jump in the sophistication,  as illustrated here. Sicne the set of candidates is 
defined by a constant cut-off, a constant jump in model information may well push models 
in and out of the candidate set randomly, leading to arbitrarily large changes in the sophis-
tication. Are such jumps possible in sophistication? We highlight two cases: underfitting and 
overfitting.
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sophistication

K(f) = min {K(i) : Ti computes f}

Sc(x) = min
{
K(φi) |

∃y : φi(y) = x,

K(φi) + |y| � C(x) + c
}

5
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f(y) = x

K(f): model size

|y|: input size

K(f) + |y| total size



Underfitting is when too much information ends up in the residual part of the two-part 
code. We saw one extreme example already: if we use an universal Turing machine as a 
model, we get a representation that is guaranteed to be within a constant of the KOlmogor-
ov complexity.

What is more, we show that there always exist choices of reference UTM such that this 
model is in the candidate set, resulting in a bounded sophistication.

This is not a new issue, and almost all treatments bypass it by explicitly disallowing univer-
sal models. The most common approach is to limit the model class to total functions.
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underfitting
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U(y) 

 Ӱ We can construct UTMs such that U is always in the can-

didate set

 Ӱ solution: only total functions allowed



Unfortunately, while this makes the problem more difficult to analyze, it is no solution. 
We can easily create a total version of U that behaves similarly for all but the most exotic 
strings. Here is an example: we give U a timebound of A(p). A grows very, very fast, so that 
for any program with a runtime that is not patently absurd, UA behaves exactly the same 
way as U.

Thus, UA is always a potential model, and we can show that there are UTMs for which UA 
will always be selected as the model that degtermines the sophistication. 

This means that for such sophistications, none of the structure that we find interesting, the 
dialogues, the landscape and the plot twists, will be counted towards the structural infor-
mation. Only information that is so ‘deep’ that it would likely take longer than the lifetime 
of the universe to unpack will increase the sophistication.
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underfitting

UA(p) : simulate U(p) for at most 
  Ackermann(p) steps.

 Ӱ Fixed size model.

 Ӱ Reaches the Kolmogorov complexity for almost 

any “normal” string x.

 Ӱ There are UTMs for which S(x) always selects 

UA as a model (if x is normal)



On the other end of the spectrum we find overfitting. This is when too much information is 
counted as structure. In the most extreme case, the model encodes the entire data. Since we 
are using K(f) to measure the size of the model, the size of such a singleton model for x is 
equal (up to a constant) to K(x). 

This has never bothered the authors of variants of sophistication so far, because the sophis-
tication is always determing by the representation with the smallest model. The idea, pre-
sumably, is that there will always be representations with smaller models in the candidate 
set.
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overfitting
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Unfortunately, we can show that there exist UTMs for which this happens: all the models 
apart from the singletons get an arbitrary constant penalty. This means that all representa-
tions but the singletons get pushed out of the candidate set, and the singleton determings 
the sophistication.

This means that either the sophistication is always equal to the Kolmogorov complexity, or it 
is for some choices of UTM, and it isn’t for others. Either way, one of the properties of slide 
15 is violated.
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overfitting
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overview

There exist UTMs for which the singleton models will al-

ways compress better than any other representation by 

an arbitrary constant amount.

re
si

du
al

 in
fo

rm
at

io
n

model information



24 of 26

recap

 Ӱ inefficient indices

• affects some definitions

• disastrous, S(x) is highly non-invariant

 Ӱ underfitting

• affects all known variants

• S(x) doesn’t work as advertised

 Ӱ overfitting

• affects almost all variants 

• makes S(x) non-invariant



Where does this leave us? The investigation of sophistication has certainy been fruitful, 
even if the original aims have not quite been satisfied. However, if we wish to go forward 
with this idea, we must be more thorough in stating our definitions, desires, and proven 
properties. 

Ultimately, the question boils down to separating structural and incidental information in 
an unambiguous manner. Our article provides several arguments for why we believe this to 
be a lost cause. However, these arguments are only informal, and we’re happy to be proved 
wrong.
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outlook

 Ӱ Interesting results

• absolutely nonstochastic objects

• relation to depth

 Ӱ A more thorough approach is required

 Ӱ Can two-part coding really separate structural and 

incidental information unambiguously?
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